Your browser doesn't support javascript.
loading
Results from a synthetic model of the ITER XRCS-Core diagnostic based on high-fidelity x-ray ray tracing.
Pablant, N A; Cheng, Z; O'Mullane, M; Gao, L; Barnsley, R; Bartlett, M N; Bitter, M; Bourcart, E; Brown, G V; De Bock, M; Delgado-Aparicio, L F; Dunn, C; Fairchild, A J; Hell, N; Hill, K W; Klabacha, J; Kraus, F; Lu, D; Magesh, P B; Mishra, S; Sánchez Del Río, M; Tieulent, R; Yakusevich, Y.
Afiliação
  • Pablant NA; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Cheng Z; ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France.
  • O'Mullane M; University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom.
  • Gao L; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Barnsley R; ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France.
  • Bartlett MN; University of Illinois at Urbana-Champaign, 104 S. Wright Street, Urbana, Illinois 61801, USA.
  • Bitter M; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Bourcart E; Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA.
  • Brown GV; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA.
  • De Bock M; ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France.
  • Delgado-Aparicio LF; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Dunn C; Plasma Science Fusion Center, MIT, Cambridge, Massachusetts 02139, USA.
  • Fairchild AJ; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA.
  • Hell N; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA.
  • Hill KW; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Klabacha J; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Kraus F; Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08543, USA.
  • Lu D; Institute of Plasma Physics, No. 350 Shushanhu Road, Hefei, Anhui, China.
  • Magesh PB; ITER-India, Institute for Plasma Research, Koteshwar, Gandhinagar 382424, Gujarat, India.
  • Mishra S; ITER-India, Institute for Plasma Research, Koteshwar, Gandhinagar 382424, Gujarat, India.
  • Sánchez Del Río M; European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France.
  • Tieulent R; ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France.
  • Yakusevich Y; University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article em En | MEDLINE | ID: mdl-39105597
ABSTRACT
A high-fidelity synthetic diagnostic has been developed for the ITER core x-ray crystal spectrometer diagnostic based on x-ray ray tracing. This synthetic diagnostic has been used to model expected performance of the diagnostic, to aid in diagnostic design, and to develop engineering tolerances. The synthetic model is based on x-ray ray tracing using the recently developed xicsrt ray tracing code and includes a fully three-dimensional representation of the diagnostic based on the computer aided design. The modeled components are plasma geometry and emission profiles, highly oriented pyrolytic graphite pre-reflectors, spherically bent crystals, and pixelated x-ray detectors. Plasma emission profiles have been calculated for Xe44+, Xe47+, and Xe51+, based on an ITER operational scenario available through the Integrated Modelling & Analysis Suite database, and modeled within the ray tracing code as a volumetric x-ray source; the shape of the plasma source is determined by equilibrium geometry and an appropriate wavelength distribution to match the expected ion temperature profile. All individual components of the x-ray optical system have been modeled with high-fidelity producing a synthetic detector image that is expected to closely match what will be seen in the final as-built system. Particular care is taken to maintain preservation of photon statistics throughout the ray tracing allowing for quantitative estimates of diagnostic performance.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum / Rev. sci. instrum / Review of scientific instruments Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum / Rev. sci. instrum / Review of scientific instruments Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos