Your browser doesn't support javascript.
loading
Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia.
Wiezorek, J S; Brown, D H; Kupperman, D E; Brass, C A.
Afiliação
  • Wiezorek JS; Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.
J Clin Invest ; 94(6): 2224-30, 1994 Dec.
Article em En | MEDLINE | ID: mdl-7989578
ABSTRACT
It has been widely postulated that the central mechanism of hepatic reperfusion injury involves the conversion, during ischemia, of the enzyme xanthine dehydrogenase (XDH) to its free radical-producing form, xanthine oxidase (XOD). However, this theory has been questioned because (a) XDH to XOD conversion in whole liver occurs very slowly; (b) the cellular distribution of XDH/XOD is unclear; and (c) the direct demonstration of XDH to XOD conversion in viable cells is lacking. In this paper, we address all three issues by measuring XDH to XOD conversion and cell viability in purified populations of hepatic endothelial cells (EC), Kupffer cells (KC), and hepatocytes (HEP). Although XDH/XOD activity on a cellular basis was greater in hepatocytes (0.92 +/- 0.12 mU/10(6) cells) than ECs (0.03 +/- 0.01) or KCs (0.12 +/- 0.04), XDH + XOD specific activity was similar in all three cell types (HEP 1.85 +/- 0.10 U/g protein; EC 1.69 +/- 0.54; KC 2.30 +/- 0.22). Over 150 min of warm (37 degrees C) or 24 h of cold (4 degrees C) hypoxia, percent XOD activity increased slowly in ECs, from 21 +/- 2% (basal) to 39 +/- 3% (warm) and 49 +/- 5% (cold) and in HEPs (29 +/- 2% to 38 +/- 3% and 49 +/- 2%), but converted significantly faster in KCs (28 +/- 3% to 91 +/- 7% and 94 +/- 4%). The dramatic changes in Kupffer cell XOD during cold hypoxia occurred despite only minor changes in cell viability. When hypoxic KCs were reoxygenated after 16 h of cold hypoxia, there was a marked increase in cell death that was significantly blocked by allopurinol. These data suggest that significant conversion to the free radical-producing state occurs within viable KCs, and that Kupffer cell XOD may play an important role in mediating reperfusion injury in the liver.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xantina Desidrogenase / Xantina Oxidase / Células de Kupffer / Fígado Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: J Clin Invest Ano de publicação: 1994 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xantina Desidrogenase / Xantina Oxidase / Células de Kupffer / Fígado Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: J Clin Invest Ano de publicação: 1994 Tipo de documento: Article