RESUMEN
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiología de Alimentos , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificaciónRESUMEN
Four strains, representing two novel Bifidobacterium species, were isolated from water kefir, a fermented beverage. 16S rRNA gene analysis suggested that the novel species share high identities (98.82-98.89%) with Bifidobacterium aquikefiri LMG 28769T. Complete genomes were assembled with a short- and long-read hybrid sequencing approach. In agreement with the 16S rRNA gene analysis, phylogenetics with 117 marker genes places the novel species closest to B. aquikefiri LMG 28769T as well. The isolates have average nucleotide identity (ANI) scores ranging from 81.46 to 84.84% and digital DNA-DNA hybridization (dDDH) scores from 23.9 to 38.5% with the closest related species, as well as ANI scores between the proposed new species of 80.50%, indicating that the isolates represent two novel species. Matrix-assisted laser desorption/ionization-time of flight chemotaxonomic analysis supported the gene-based taxonomic placement. We propose the names Bifidobacterium fermentum sp. nov. and Bifidobacterium aquikefiricola sp. nov. for these novel species within the Bifidobacterium genus. The proposed type strain B. fermentum WK012_4_13T (= LMG 33104T = DSM 116073T; GenBank accession number GCF_041080835.1) has a genome size of 2.43 Mbp, with a G+C content of 56.00 mol%. The proposed type strain for B. aquikefiricola WK041_4_12T (= LMG 33105T = DSM 116074T; GenBank accession number GCF_041080795.1) has a genome size of 2.36 Mbp and a G+C content of 53.94 mol%. B. fermentum cells are Gram-positive staining, non-motile, non-spore-forming, fructose-6-phosphate phosphoketolase (F6PPK)-positive, catalase- and oxidase-negative and bacillary club shaped. B. aquikefiricola cells are Gram-positive staining, non-motile, non-spore-forming, F6PPK-positive, catalase- and oxidase-negative and square rod shaped.
Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , Bifidobacterium , ADN Bacteriano , Genoma Bacteriano , Kéfir , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Bifidobacterium/clasificación , ADN Bacteriano/genética , Kéfir/microbiología , Ácidos Grasos/análisisRESUMEN
Plasma-Activated Water (PAW) was generated from tap water using a surface dielectric barrier discharge at different discharge power (26 and 36 W) and activation time (5 and 30 min). The inactivation of a three-strain Listeria monocytogenes cocktail in planktonic and biofilm state was evaluated. PAW generated at 36 W-30 min showed the lowest pH and the highest hydrogen peroxide, nitrates, nitrites contents and effectiveness against cells on planktonic state, resulting in 4.6 log reductions after a 15-min treatment. Although the antimicrobial activity in biofilms formed on stainless steel and on polystyrene was lower, increasing the exposure time to 30 min allowed an inactivation >4.5 log cycles. The mechanisms of action of PAW were investigated using chemical solutions that mimic its physico-chemical characteristics and also RNA-seq analysis. The main transcriptomic changes affected carbon metabolism, virulence and general stress response genes, with several overexpressed genes belonging to the cobalamin-dependent gene cluster.
Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/fisiología , Transcriptoma , Agua/análisis , Plancton , Biopelículas , Acero Inoxidable/análisis , Recuento de Colonia Microbiana , Microbiología de AlimentosRESUMEN
The study of the food microbiome has gained considerable interest in recent years, mainly due to the wide range of applications that can be derived from the analysis of metagenomes. Among these applications, it is worth mentioning the possibility of using metagenomic analyses to determine food authenticity, to assess the microbiological safety of foods thanks to the detection and tracking of pathogens, antibiotic resistance genes and other undesirable traits, as well to identify the microorganisms responsible for food processing defects. Metataxonomics and metagenomics are currently the gold standard methodologies to explore the full potential of metagenomes in the food industry. However, there are still a number of challenges that must be solved in order to implement these methods routinely in food chain monitoring, and for the regulatory agencies to take them into account in their opinions. These challenges include the difficulties of analysing foods and food-related environments with a low microbial load, the lack of validated bioinformatics pipelines adapted to food microbiomes and the difficulty of assessing the viability of the detected microorganisms. This review summarizes the methods of microbiome analysis that have been used, so far, in foods and food-related environments, with a specific focus on those involving Next-Generation Sequencing technologies.
Asunto(s)
Metagenómica , Microbiota , Farmacorresistencia Microbiana , Industria de Alimentos , MetagenomaRESUMEN
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Asunto(s)
Biopelículas , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Enfermedades de las Aves de Corral/microbiología , Animales , Infecciones por Campylobacter/transmisión , Campylobacter jejuni/química , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/genética , Pollos/microbiología , Enfermedades Transmitidas por los Alimentos/microbiología , Calor , Humanos , Presión Osmótica , Ácido Peracético/farmacología , Enfermedades de las Aves de Corral/transmisión , Estrés FisiológicoRESUMEN
Food business operators are responsible for food safety and assessment of shelf lives for their ready-to-eat products. For assisting them, a customized software based on predictive models, ListWare, is being developed. The aim of this study was to develop and validate a predictive model for the growth of Listeria monocytogenes in sliced roast beef. A challenge study was performed comprising 51 different combinations of variables. The growth curves followed the Baranyi and Roberts model with no clear lag phase and specific growth rates in the range <0.005-0.110 hr-1. A linear regression model was developed based on 528 observations and had an adjusted R-square of 0.80. The significant predictors were storage temperature, sodium lactate, interactions between sodium acetate and temperature, and MAP packaging and temperature. The model was validated in four laboratories in three countries. For conditions where the model predicted up to + log 2 cfu/g Listeria concentration, the observed concentrations were true or below the predicted concentration in 90% of the cases. For the remaining 10%, the roast beef was coated with spices and therefore different from the others. The model will be implemented in ListWare web-application for calculation of "Listeria shelf life".
Asunto(s)
Comida Rápida/microbiología , Contaminación de Alimentos/estadística & datos numéricos , Listeria monocytogenes/crecimiento & desarrollo , Productos de la Carne/microbiología , Animales , Bovinos , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Almacenamiento de Alimentos , Cinética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Productos de la Carne/análisis , Modelos Biológicos , Análisis de Regresión , TemperaturaRESUMEN
This study was aimed at assessing whether the repeated exposure of 12 strains of Salmonella spp., Escherichia coli, and Listeria monocytogenes to alternative nonthermal decontamination techniques with UV light (UV-C) and nonthermal atmospheric plasma (NTAP) may cause the emergence of variants showing increased resistance to clinically relevant antibiotics (ampicillin, cefotaxime, ciprofloxacin, gentamicin, streptomycin, tetracycline, erythromycin, vancomycin, and colistin). UV-C and NTAP treatments were applied on the surface of inoculated brain heart infusion (BHI) agar plates. Survivors were recovered and after 24 h of growth in BHI broth were again subjected to the decontamination treatment; this was repeated for 10 consecutive cycles. A total of 174 strain/decontamination technique/antibiotic combinations were tested, and 12 variant strains with increased resistance to one of the antibiotics studied were identified, with the increases in the MICs in Mueller-Hinton broth ranging from 2- to 256-fold. The variant strains of Salmonella spp. isolated were further characterized through phenotypic screenings and whole-genome sequencing (WGS) analyses. Most changes in susceptibility were observed for antibiotics that act at the level of protein synthesis (aminoglycosides, tetracyclines, and glycylcyclines) or DNA replication (fluoroquinolones), as well as for polymyxins. No changes in resistance to ß-lactams were detected. WGS analyses showed the occurrence of sequence alterations in some antibiotic cellular targets (e.g., gyrA for ciprofloxacin-resistant variants, rpsL for a streptomycin-resistant variant), accompanied by variations in stress response regulators and membrane transporters likely involved in the nonselective efflux of antibiotics, which altogether resulted in a low- to medium-level increase in microbial resistance to several antibiotics.IMPORTANCE The emergence and spread of antibiotic resistance along the food chain can be influenced by the different antimicrobial strategies used from farm to fork. This study evidences that two novel, not yet widely used, nonthermal microbial decontamination techniques, UV light and nonthermal atmospheric plasma, can select variants with increased resistance to various clinically relevant antibiotics, such as ciprofloxacin, streptomycin, tetracycline, and erythromycin. Whole-genome analysis of the resistant variants obtained for Salmonella spp. allowed identification of the genetic changes responsible for the observed phenotypes and suggested that some antimicrobial classes are more susceptible to the cross-resistance phenomena observed. This information is relevant, since these novel decontamination techniques are being proposed as possible alternative green techniques for the decontamination of environments and equipment in food and clinical settings.
Asunto(s)
Antibacterianos/farmacología , Descontaminación/métodos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Listeria monocytogenes/genética , Salmonella/genética , Selección Genética , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/efectos de la radiación , Pruebas de Sensibilidad Microbiana , Gases em Plasma/uso terapéutico , Proteína Ribosómica S9 , Salmonella/efectos de los fármacos , Salmonella/efectos de la radiación , Rayos UltravioletaRESUMEN
Our investigation focused on foodborne outbreaks related to meat and meat products, published in peer-reviewed journals in the period 1980-2015. Most of the outbreaks, investigated in this study, were caused by Escherichia coli and Salmonella, causing 33 and 21 outbreaks, respectively, mostly in Europe and the United States. In the E. coli outbreaks, the total number of reported cases was 1966, of which 1543 were laboratory confirmed. The number of cases requiring hospitalization was 476, of whom 233 cases had a hemolytic-uremic syndrome (HUS), and the reported deaths were 32. All of the E. coli outbreaks, except four, were caused by serovar O157:H7. The other four outbreaks were caused by the following serovars: O111:H8, O26:H11, O111, and O103:H25. Fresh processed meat products were the category most frequently implicated. In the Salmonella outbreaks, the total number of all reported cases was 2279, of whom 1891 were laboratory confirmed. The number of reported cases requiring hospitalization was 94, and seven were reported dead. Regarding Salmonella, eight serovars caused those outbreaks. The most common serovar causing Salmonella-related outbreaks was Salmonella Typhimurium. The food category most frequently implicated in those outbreaks was raw-cured fermented sausages. Other organisms linked to meat-associated outbreaks, but less frequently reported, were Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botulinum, and Listeria monocytogenes. Issues of the burden of outbreaks, the challenges of comparing global outbreaks, food attribution, and how the meat industry works to meet consumer demands while maintaining food safety are discussed.
Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Productos de la Carne/microbiología , Carne Roja/microbiología , Infecciones por Salmonella/epidemiología , Animales , Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Predicción , Humanos , Salmonella typhimurium/aislamiento & purificaciónRESUMEN
BACKGROUND: The objectives of this study were to characterize the diversity and magnitude of antimicrobial resistance among Staphylococcus species recovered from imported beef meat sold in the Egyptian market and the potential mechanisms underlying the antimicrobial resistance phenotypes including harboring of resistance genes (mecA, cfr, gyrA, gyrB, and grlA) and biofilm formation. RESULTS: The resistance gene mecA was detected in 50% of methicillin-resistant non-Staphylococcus aureus isolates (4/8). Interestingly, our results showed that: (i) resistance genes mecA, gyrA, gyrB, grlA, and cfr were absent in Staphylococcus hominis and Staphylococcus hemolyticus isolates, although S. hominis was phenotypically resistant to methicillin (MR-non-S. aureus) while S. hemolyticus was resistant to vancomycin only; (ii) S. aureus isolates did not carry the mecA gene (100%) and were phenotypically characterized as methicillin- susceptible S. aureus (MSS); and (iii) the resistance gene mecA was present in one isolate (1/3) of Staphylococcus lugdunensis that was phenotypically characterized as methicillin-susceptible non-S. aureus (MSNSA). CONCLUSIONS: Our findings highlight the potential risk for consumers, in the absence of actionable risk management information systems, of imported foods and advice a strict implementation of international standards by different venues such as CODEX to avoid the increase in prevalence of coagulase positive and coagulase negative Staphylococcus isolates and their antibiotic resistance genes in imported beef meat at the Egyptian market.
Asunto(s)
Antibacterianos/farmacología , Coagulasa/metabolismo , Farmacorresistencia Bacteriana/genética , Carne Roja/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Virulencia/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Bovinos , Chlorocebus aethiops , Girasa de ADN/genética , Egipto , Microbiología de Alimentos , Genes Bacterianos/genética , Proteínas Hemolisinas/metabolismo , Meticilina/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Resistencia a la Meticilina/genética , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Fenotipo , ARN Ribosómico 16S/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus/clasificación , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Staphylococcus aureus/enzimología , Staphylococcus aureus/aislamiento & purificación , Staphylococcus haemolyticus/efectos de los fármacos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/aislamiento & purificación , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/genética , Staphylococcus lugdunensis/aislamiento & purificación , Vancomicina/farmacología , Células Vero/microbiologíaRESUMEN
High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.
Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Permeabilidad de la Membrana Celular , Colorantes/metabolismo , Escherichia coli/ultraestructura , Microbiología de Alimentos , Presión Hidrostática , Microscopía Electrónica de Transmisión , Propidio/metabolismo , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Antimicrobial resistance is an increasing societal burden worldwide, with ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and Escherichia coli) pathogens overwhelming the healthcare sectors and more recently becoming predominantly a concern for their persistence in food and food industries, including agricultural settings and animal husbandry environments. The aim of this review is to explore the mechanisms by which the ESKAPEE group gained its multidrug resistance profiles, to analyse their occurrence in different foods and other related reservoirs, including water, and to address the current challenges due to their spread within the food production chain. Moreover, the repertoire of surveillance programmes available focused on monitoring their occurrence, common reservoirs and the spread of antimicrobial resistance are described in this review paper. Evidence from the literature suggests that restricting our scope in relation to multidrug resistance in ESKAPEE pathogens to healthcare and healthcare-associated facilities might actually impede unveiling the actual issues these pathogens can exhibit, for example, in food and food-related reservoirs. Furthermore, this review addresses the need for increasing public campaigns aimed at addressing this challenge, which must be considered in our fight against antimicrobial resistance shown by the ESKAPEE group in food and food-related sectors.
RESUMEN
Antimicrobial resistance (AMR) represents a significant global health problem which challenges Sustainable Development Goal 3 of the United Nations, with growing concerns about the possibility of AMR transmission through the food chain. The indiscriminate use of antimicrobials for the treatment of food production animals and for agricultural crop improvement, in addition to the direct discharge of livestock farm residues to sewage and the use of animal manure in agriculture, are among the factors that can facilitate the selection and transmission of AMR throughout the food chain. The study of food microbiomes has been boosted by the advent of next-generation sequencing techniques, which have enabled gaining in-depth understanding of the diversity of antimicrobial resistance genes present in food and associated environments (the so-called resistome). The aim of this review is to provide an accurate and comprehensive overview of the knowledge currently available on the resistome of the most frequently consumed foods worldwide, from a One Health perspective. To this end, the different metagenomic studies which have been conducted to characterize the resistome of foods are compiled and critically discussed.
Asunto(s)
Salud Única , Animales , Humanos , Farmacorresistencia Bacteriana/genética , Cadena Alimentaria , Antibacterianos/farmacología , Metagenómica , Microbiología de Alimentos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificaciónRESUMEN
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Asunto(s)
Alimentos , Eliminación de Residuos , Humanos , Biodegradación Ambiental , Concentración de Iones de HidrógenoRESUMEN
The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.
Asunto(s)
Microbiología de Alimentos , Microbiota , Carne Roja , Microbiota/genética , Carne Roja/microbiología , Animales , Bovinos , Manipulación de Alimentos/métodos , Bacterias/genética , Bacterias/clasificación , Metagenómica/métodos , Farmacorresistencia Bacteriana/genética , Mataderos , Antibacterianos/farmacología , Contaminación de Alimentos/análisis , Farmacorresistencia Microbiana/genética , Embalaje de AlimentosRESUMEN
BACKGROUND: Processing environments can be an important source of pathogenic and spoilage microorganisms that cross contaminate meat and meat products. The aim of this study was to characterize the microbiome of raw materials, processing environments and end products from 19 facilities producing different meat products. RESULTS: The taxonomic profiles of the microbial communities evolved along processing, from raw materials to end products, suggesting that food contact (FC) surfaces play an important role in modulating the microbiome of final products. Some species persisted with the highest relative abundance in raw materials, food processing environments and/or in the final product, including species from the genera Pseudomonas, Staphylococcus, Brochothrix, Acinetobacter and Psychrobacter. Processing environments showed a very diverse core microbiota, partially shared with the products. Pseudomonas fragi and Pseudomonas sp. Lz4W (in all sample and facility types) and Brochothrix thermosphacta, Psychrobacter sp. and Psychrobacter sp. P11F6 (in raw materials, FC surfaces and end products) were prominent members of the core microbiota for all facilities, while Latilactobacillus sakei was found as a dominant species exclusively in end products from the facilities producing fermented sausages. Processing environments showed a higher amount of antimicrobial resistance genes and virulence factors than raw materials and end products. One thousand four hundred twenty-one medium/high-quality metagenome-assembled genomes (MAGs) were reconstructed. Of these, 274 high-quality MAGs (completeness > 90%) corresponded to 210 putative new species, mostly found in processing environments. For two relevant taxa in meat curing and fermentation processes (S. equorum and L. sakei, respectively), phylogenetic variation was observed associated with the specific processing facility under study, which suggests that specific strains of these taxa may be selected in different meat processing plants, likely contributing to the peculiar sensorial traits of the end products produced in them. CONCLUSIONS: Overall, our findings provide the most detailed metagenomics-based perspective up to now of the microbes that thrive in meat, meat products and associated environments and open avenues for future research activities to better understand the microbiome functionality and potential contribution to meat quality and safety. Video Abstract.
Asunto(s)
Bacterias , Manipulación de Alimentos , Microbiología de Alimentos , Productos de la Carne , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos de la Carne/microbiología , Microbiología Ambiental , Carne/microbiología , ARN Ribosómico 16S/genética , Animales , FilogeniaRESUMEN
A study was conducted in fish processing facilities to investigate the microbial composition, microbial metabolic potential, and distribution of antibiotic resistance genes. Whole metagenomic sequencing was used to analyze microbial communities from different processing rooms, operators and fish products. Taxonomic analyses identified the genera Pseudomonas and Psychrobacter as the most prevalent bacteria. A Principal Component Analysis revealed a distinct separation between fish product and environmental samples, as well as differences between fish product samples from companies processing either Gadidae or Salmonidae fish. Some particular bacterial genera and species were associated with specific processing rooms and operators. Metabolic analysis of metagenome assembled genomes demonstrated variations in microbiota metabolic profiles of microbiota across rooms and fish products. The study also examined the presence of antibiotic-resistance genes in fish processing environments, contributing to the understanding of microbial dynamics, metabolic potential, and implications for fish spoilage.
RESUMEN
BACKGROUND: Artisanal cheeses usually contain a highly diverse microbial community which can significantly impact their quality and safety. Here, we describe a detailed longitudinal study assessing the impact of ripening in three natural caves on the microbiome and resistome succession across three different producers of Cabrales blue-veined cheese. RESULTS: Both the producer and cave in which cheeses were ripened significantly influenced the cheese microbiome. Lactococcus and the former Lactobacillus genus, among other taxa, showed high abundance in cheeses at initial stages of ripening, either coming from the raw material, starter culture used, and/or the environment of processing plants. Along cheese ripening in caves, these taxa were displaced by other bacteria, such as Tetragenococcus, Corynebacterium, Brevibacterium, Yaniella, and Staphylococcus, predominantly originating from cave environments (mainly food contact surfaces), as demonstrated by source-tracking analysis, strain analysis at read level, and the characterization of 613 metagenome-assembled genomes. The high abundance of Tetragenococcus koreensis and Tetragenococcus halophilus detected in cheese has not been found previously in cheese metagenomes. Furthermore, Tetragenococcus showed a high level of horizontal gene transfer with other members of the cheese microbiome, mainly with Lactococcus and Staphylococcus, involving genes related to carbohydrate metabolism functions. The resistome analysis revealed that raw milk and the associated processing environments are a rich reservoir of antimicrobial resistance determinants, mainly associated with resistance to aminoglycosides, tetracyclines, and ß-lactam antibiotics and harbored by aerobic gram-negative bacteria of high relevance from a safety point of view, such as Escherichia coli, Salmonella enterica, Acinetobacter, and Klebsiella pneumoniae, and that the displacement of most raw milk-associated taxa by cave-associated taxa during ripening gave rise to a significant decrease in the load of ARGs and, therefore, to a safer end product. CONCLUSION: Overall, the cave environments represented an important source of non-starter microorganisms which may play a relevant role in the quality and safety of the end products. Among them, we have identified novel taxa and taxa not previously regarded as being dominant components of the cheese microbiome (Tetragenococcus spp.), providing very valuable information for the authentication of this protected designation of origin artisanal cheese. Video Abstract.
Asunto(s)
Queso , Microbiología de Alimentos , Microbiota , Queso/microbiología , Queso/normas , Microbiota/fisiología , Transferencia de Gen Horizontal/genética , Metagenoma/genética , Farmacorresistencia Microbiana/genéticaRESUMEN
The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.
Asunto(s)
Queso , Probióticos , Queso/microbiología , Metagenoma , Microbiología de Alimentos , Microbiota , Humanos , Industria Lechera/métodos , Europa (Continente) , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificaciónRESUMEN
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
RESUMEN
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.