Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Acc Chem Res ; 57(10): 1478-1487, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38687873

RESUMEN

ConspectusMagnetism is an area of immense fundamental and technological importance. At the atomic level, magnetism originates from electron "spin". The field of nanospintronics (or nanoscale spin-based electronics) aims to control spins in nanoscale systems, which has resulted in astronomical improvement in data storage and magnetic field sensing technologies over the past few decades, recognized by the 2007 Nobel Prize in Physics. Spins in nanoscale solid-state devices can also act as quantum bits or qubits for emerging quantum technologies, such as quantum computing and quantum sensing.Due to the fundamental connection between magnetism and spins, ferromagnets play a key role in many solid-state spintronic devices. This is because at the Fermi level, electron density of states is spin-polarized, which permits ferromagnets to act as electrical injectors and detectors of spins. Ferromagnets, however, have limitations in terms of low spin polarization at the Fermi level, stray magnetic fields, crosstalk, and thermal instability at the nanoscale. Therefore, new physics and new materials are needed to propel spintronic and quantum device technologies to the true atomic limit. Emerging new phenomena such as chirality induced spin selectivity or CISS, in which an intriguing correlation between carrier spin and medium chirality is observed, could therefore be instrumental in nanospintronics. This effect could allow molecular-scale, chirality controlled spin injection and detection without the need for any ferromagnet, thus opening a fundamentally new direction for device spintronics.While CISS finds a myriad of applications in diverse areas such as chiral separation, recognition, detection, and asymmetric catalysis, in this focused Account, we exclusively review spintronic device results of this effect due to its immense potential for future spintronics. The first generation of CISS-based spintronic devices have primarily used chiral bioorganic molecules; however, many practical limitations of these materials have also been identified. Therefore, our discussion revolves around the family of chiral composite materials, which may emerge as an ideal platform for CISS due to their ability to assimilate various desirable material properties on a single platform. This class of materials has been extensively studied by the organic chemistry community in the past decades, and we discuss the various chirality transfer mechanisms that have been identified, which play a central role in CISS. Next, we discuss CISS device studies performed on some of these chiral composite materials. Emphasis is given to the family of chiral organic-carbon allotrope composites, which have been extensively studied by the authors of this Account over the past several years. Interestingly, due to the presence of multiple materials, CISS signals from hybrid chiral systems sometimes differ from those observed in purely chiral systems. Given the sheer diversity of chiral composite materials, CISS device studies so far have been limited to only a few varieties, and this Account is expected to draw increased attention to the family of chiral composites and motivate further studies of their CISS applications.

2.
J Org Chem ; 89(1): 163-173, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38087461

RESUMEN

We report the synthesis of a new set of amphiphilic saddle-shaped heptagon-containing polycyclic aromatic hydrocarbons (PAHs) functionalized with tetraethylene glycol chains and their self-assembly into large two-dimensional (2D) polymers. An in-depth analysis of the self-assembly mechanism at the air/water interface has been carried out, and the proposed arrangement models are in good agreement with the molecular dynamics simulations. Quite remarkably, the number and disposition of the tetraethylene glycol chains significantly influence the disposition of the PAHs at the interface and conditionate their packing under pressure. For the three compounds studied, we observed three different behaviors in which the aromatic core is parallel, perpendicular, and tilted with respect to the water surface. We also show that these curved PAHs are able to self-assemble in solution into remarkably large sheets of up to 150 µm2. These results show the relationship, within a family of curved nanographenes, between the monomer configuration and their self-assembly capacity in air/water interfaces and organic-water mixtures.

3.
J Nat Prod ; 86(1): 166-175, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36542806

RESUMEN

A fluorescent labeling protocol for hydroxylated natural compounds with promising antitumor properties has been used to synthesize, in yields of 72-86%, 12 derivatives having fluorescent properties and biological activity. The reagent used for the synthesis of these fluorescent derivatives was 7-nitrobenzo-2-oxa-1,3-diazole chloride (NBD-Cl). The linkers employed to bind the NBD-Cl reagent to the natural compounds were ω-amino acids (Aa) of different chain lengths. The natural triterpene compounds chosen were oleanolic and maslinic acid, as their corresponding 28-benzylated derivatives. Thus, 12 NBD-Aa-triterpene conjugates have been studied for their optical fluorescence properties and their biological activities against cell proliferation in three cancer cell lines (B16-F10, HT-29, and HepG2), compared with three nontumor cell lines (HPF, IEC-18, and WRL68) from different tissues. The results of the fluorescence study have shown that the best fluorescent labels are those in which the ω-amino acid chain is shorter, and the carboxylic group is not benzylated. Analysis by confocal microscopy showed that these compounds were rapidly incorporated into cells in all three cancer cell lines, with these same derivatives showing the highest toxicity against the cancer cell lines tested. Then, the fluorescent labeling of these NBD-Aa-triterpene conjugates enabled their uptake and subcellular distribution to be followed in order to probe in detail their biological properties at the cellular and molecular level.


Asunto(s)
Triterpenos , Humanos , Transporte Biológico , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/química , Células HT29 , Triterpenos/farmacología , Triterpenos/química
4.
J Chem Phys ; 159(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37466230

RESUMEN

Spin-orbit coupling in a chiral medium is generally assumed to be a necessary ingredient for the observation of the chirality-induced spin selectivity (CISS) effect. However, some recent studies have suggested that CISS may manifest even when the chiral medium has zero spin-orbit coupling. In such systems, CISS may arise due to an orbital polarization effect, which generates an electromagnetochiral anisotropy in two-terminal conductance. Here, we examine these concepts using a chirally functionalized carbon nanotube network as the chiral medium. A transverse measurement geometry is used, which nullifies any electromagnetochiral contribution but still exhibits the tell-tale signs of the CISS effect. This suggests that CISS may not be explained solely by electromagnetochiral effects. The role of nanotube spin-orbit coupling on the observed pure CISS signal is studied by systematically varying nanotube diameter. We find that the magnitude of the CISS signal scales proportionately with the spin-orbit coupling strength of the nanotubes. We also find that nanotube diameter dictates the supramolecular chirality of the medium, which in turn determines the sign of the CISS signal.

5.
Angew Chem Int Ed Engl ; 62(16): e202218640, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36806838

RESUMEN

We report on the chemical design of chiral molecular junctions with stress-dependent conductance, whose helicity is maintained during the stretching of a single molecule junction due to the stapling of both ends of the inner helix. In the reported compounds, different conductive pathways are observed, with clearly different conductance values and plateau-length distributions, attributed to different conformations of the helical structures. The large chiro-optical responses and the potential use of these molecules as unimolecular spin filters have been theoretically proved using state-of-the-art Density Functional Theory (DFT) calculations, including a fully ab-initio estimation of the CISS-originating spin polarization which is done, for the first time, for a realistic molecular system.

6.
J Nat Prod ; 84(5): 1587-1597, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33956447

RESUMEN

A set of 12 maslinic acid-coumarin conjugates was synthesized, with 9 being maslinic acid-diamine-coumarin conjugates at the C-28 carboxylic acid group of triterpene acid and the other three being maslinic acid-coumarin conjugates at C-2/C-3 and/or C-28 of the triterpene skeleton. The cytotoxic effects of these 12 triterpene conjugates were evaluated in three cancer cell lines (B16-F10, HT29, and Hep G2) and compared, respectively, with three nontumor cell lines from the same or similar tissue (HPF, IEC-18, and WRL68). The most potent cytotoxic results were achieved by a conjugate with two molecules of coumarin-3-carboxylic acid coupled through the C-2 and C-3 hydroxy groups of maslinic acid. This conjugate showed submicromolar IC50 values in two of the three cancer cell lines tested (0.6, 1.1, and 0.9 µM), being between 110- and 30-fold more effective than its corresponding precursor. Furthermore, this conjugate (10) showed percentages of cell viability for the three nontumor lines of 90%. Four maslinic acid-coumarin conjugates displayed apoptotic effects in the treated cells, with total apoptosis rates of between 40 and 85%, relative to the control. Almost all the compounds assayed caused cell-cycle arrest in all cancer cell lines, increasing the number of these cells in the G0/G1 phase.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cumarinas/farmacología , Triterpenos/farmacología , Animales , Antineoplásicos/síntesis química , Cumarinas/síntesis química , Células HT29 , Células Hep G2 , Humanos , Melanoma Experimental , Potencial de la Membrana Mitocondrial , Ratones , Estructura Molecular , Aceite de Oliva , Triterpenos/síntesis química
7.
Org Biomol Chem ; 17(36): 8425-8434, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31469142

RESUMEN

In this work we describe the ability of a simple enantiopure sulfoxide group to promote folding of oligo ortho-phenylene ethynylenes (o-OPEs) with one helical sense. A family of foldamers with up to seven triple bonds was synthesized and fully characterized. Moreover, changes in structure and chiroptical properties caused by Ag(i) coordination have been studied by NMR, UV, VCD and ECD measurements. Quantum mechanical DFT calculations support experimental results.

8.
Chemistry ; 24(11): 2653-2662, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29240981

RESUMEN

A new family of homochiral silver complexes based on carbophilic interactions with ortho-phenylene ethynylene (o-OPE) scaffolds containing up to two silver atoms are described. These compounds represent a unique class of complexes with chirality at the metal. Chiral induction is based on the inclusion of chiral sulfoxides, which allow efficient transfer of chirality to the helically folded o-OPE, leading to circularly polarized luminescence (CPL)- and vibrational circular dichroism (VCD)-active compounds. In the presence of silver(I) cations, carbophilic interactions dominate, which promote helical structures with a defined helicity. This is one of the very scarce examples of the use of such interactions in the attractive field of abiotic foldamers. The switching event has been extensively studied by using different chiroptical techniques, including circular dichroism, CPL, and VCD, and represents one of the few CPL switches described in the literature.

9.
Soft Matter ; 14(46): 9343-9350, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30307451

RESUMEN

Dipeptides self-assemble into supramolecular structures showing plenty of applications in the nanotechnology and biomedical fields. A set of Fmoc-dipeptides with different aminoacid sequences has been synthesized and their self-assembly at fluid interfaces has been assessed. The relevant molecular parameters for achieving an efficient 2D self-assembly process have been established. The self-assembled nanostructures of Fmoc-dipeptides displayed significant chirality and retained the chemical functionality of the aminoacids. The impact of the sequence on the final supramolecular structure has been evaluated in detail using in situ characterization techniques at air/water interfaces. This study provides a general route for the 2D self-assembly of Fmoc-dipeptides.


Asunto(s)
Dipéptidos/química , Fluorenos/química , Aire , Secuencia de Aminoácidos , Agua
10.
J Org Chem ; 83(8): 4455-4463, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29577727

RESUMEN

In this manuscript, we report the first synthesis of an organic monomolecular emitter, which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe. The enantiopure helical ortho-oligo(phenylene)ethynylene ( o-OPE) core has been prepared by a new and efficient macrocyclization reaction. The combination of such o-OPE helical skeleton and a pyrene couple leads to two different CPL emission features in a single structure whose ratio linearly responds to silver(I) concentration.

11.
Chirality ; 30(1): 43-54, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29086443

RESUMEN

In this paper, we have studied the chiroptical properties of a family of o-oligo(phenyleneethynylene) (o-OPE) derivatives with different steric hindrance. Experimental results show high dissymmetry factors (gabs and glum up to 1.1 × 10-2 ) and very similar electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) for all the derivatives that make this basic o-OPE scaffold a robust pure organic emitter. Vibrational circular dichroism spectra are used to characterize conformational properties in solution. Density functional theory and time-dependent density functional theory calculations support experimental results also proving that ECD and CPL are almost exclusively linked to helical moiety and not to size or conformation of substituents. As chiroptical properties of these emitters are independent of substituents, this OPE scaffold can be used as basic skeleton for the design of sensing probes with high CPL efficiencies.

12.
J Am Chem Soc ; 137(43): 13818-26, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26452050

RESUMEN

In this paper, we have systematically studied how the replacement of a benzene ring by a heterocyclic compound in oligo(phenyleneethynylene) (OPE) derivatives affects the conductance of a molecular wire using the scanning tunneling microscope-based break junction technique. We describe for the first time how OPE derivatives with a central pyrimidine ring can efficiently link to the gold electrode by two pathways presenting two different conductance G values. We have demonstrated that this effect is associated with the presence of two efficient conductive pathways of different length: the conventional end-to-end configuration, and another with one of the electrodes linked directly to the central ring. This represents one of the few examples in which two defined conductive states can be set up in a single molecule without the aid of an external stimulus. Moreover, we have observed that the conductance through the full length of the heterocycle-based OPEs is basically unaffected by the presence of the heterocycle. All these results and the simplicity of the proposed molecules push forward the development of compounds with multiple conductance pathways, which would be a breakthrough in the field of molecular electronics.

13.
Phys Chem Chem Phys ; 17(47): 31902-10, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26568425

RESUMEN

The design of two dimensional graphene-type materials with an anisotropic electron flow direction in the X- and Y-axes opens the door for the development of novel electronic materials with multiple functions in nanoelectronics. In the present work, we have studied the electronic transport properties of a new family of 2D graphene-graphyne hybrids presenting conformationally free phenylethylene subunits. This system ensures two different conductive pathways that are perpendicular to each other: an acene nanoribbon subunit, in the X-axis, with graphene-type conduction, and a free to rotate phenylethylene subunit, in the Y-axis, in which the magnitude of the conduction depends dynamically on the corresponding torsion angle. Our calculations have confirmed that this system presents two different conduction pathways, which are related to the presence of asymmetric Dirac-type cones. Moreover, the Dirac cones can be dynamically modified in the presence of an external gate electrode, which is unprecedented in the literature.

14.
J Org Chem ; 79(4): 1529-41, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24476084

RESUMEN

In this work, we show that the unique combination of a nickel catalyst and Cp2TiCl allows the direct conjugate addition of aryl and alkenyl iodides, bromides, and to a lesser extent, chlorides and triflates to α,ß-unsaturated carbonyls at room temperature, without requiring the previous formation of an organometallic nucleophile. The reaction proceeds inter- and intramolecularly with good functional group compatibility, which is key for the development of free protecting group methodologies. Carbo- and heterocycles of five- and six-membered rings are obtained in good yields. Moreover, some insights about the mechanism involved have been obtained from cyclic voltammetry, UV-vis, and HRTEM measurements.

15.
Int J Biol Macromol ; 260(Pt 1): 129368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219926

RESUMEN

The effective implementation of many of the applications of magnetic hydrogels requires the development of innovative systems capable of withstanding a substantial load of magnetic particles to ensure exceptional responsiveness, without compromising their reliability and stability. To address this challenge, double-network hydrogels have emerged as a promising foundation, thanks to their extraordinary mechanical deformability and toughness. Here, we report a semi-interpenetrating polymer networks (SIPNs) approach to create diverse magnetic SIPNs hydrogels based on alginate or cellulose, exhibiting remarkable deformability under certain stresses. Achieving strong responsiveness to magnetic fields is a key objective, and this characteristic is realized by the incorporation of highly magnetic iron microparticles at moderately large concentrations into the polymer network. Remarkably, the SIPNs hydrogels developed in this research accommodate high loadings of magnetic particles without significantly compromising their physical properties. This feature is essential for their use in applications that demand robust responsiveness to applied magnetic fields and overall stability, such as a hydrogel luminescent oxygen sensor controlled by magnetic fields that we designed and tested as proof-of-concept. These findings underscore the potential and versatility of magnetic SIPNs hydrogels based on carbohydrate biopolymers as fundamental components in driving the progress of advanced hydrogels for diverse practical implementations.


Asunto(s)
Celulosa , Hidrogeles , Alginatos , Reproducibilidad de los Resultados , Polímeros , Fenómenos Magnéticos
16.
Nanoscale Horiz ; 8(3): 320-330, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36740957

RESUMEN

The phenomenon of chirality induced spin selectivity (CISS) has triggered significant activity in recent years, although many aspects of it remain to be understood. For example, most investigations are focused on spin polarizations collinear to the charge current, and hence longitudinal magnetoconductance (MC) is commonly studied in two-terminal transport experiments. Very little is known about the transverse spin components and transverse MC - their existence, as well as any dependence of this component on chirality. Furthermore, the measurement of the CISS effect via two-terminal MC experiments remains a controversial topic. Detection of this effect in the linear response regime is debated, with contradicting reports in the literature. Finally, the potential influence of the well-known electric magnetochiral effect on CISS remains unclear. To shed light on these issues, in this work we have investigated the bias dependence of the CISS effect using planar carbon nanotube networks functionalized with chiral molecules. We find that (a) transverse MC exists and exhibits tell-tale signs of the CISS effect, (b) transverse CISS MC vanishes in the linear response regime establishing the validity of Onsager's relation in two-terminal CISS systems, and finally (c) the CISS signal remains present even in the absence of electric magneto chiral effects, suggesting the existence of an alternative physical origin of CISS MC.

17.
ACS Nano ; 17(20): 20424-20433, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37668559

RESUMEN

Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored. As such, it is not clear whether graphene is even a promising material for the CISS effect given its weak spin-orbit interaction. Here, we report the CISS effect in chiral graphene sheets, in which a graphene derivative (reduced graphene oxide or rGO) is noncovalently functionalized with chiral Fmoc-FF (Fmoc-diphenylalanine) supramolecular fibers. The graphene flakes acquire a "conformational chirality" postfunctionalization, which, combined with other factors, is presumably responsible for the CISS signal. The CISS signal correlates with the supramolecular chirality of the medium, which depends on the thickness of graphene used. Quite interestingly, the noncovalent supramolecular chiral functionalization of conductive materials offers a simple and straightforward methodology to induce chirality and CISS properties in a multitude of easily accessible advanced conductive materials.

18.
Gels ; 9(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661805

RESUMEN

We investigated the effect of partial dehydration under mechanical stress in the properties of alginate hydrogels. For this aim, we characterized the mechanical properties of the hydrogels under tensile and shear stress, as well as their swelling behavior, macroscopic appearance, and microscopic structure. We found that the processes of dehydration under a mechanical stress were irreversible with fully rehydration being impossible. What is more, these processes gave rise to an enhancement of the mechanical robustness of the hydrogels beyond the effect due to the increase in polymer concentration caused by dehydration. Finally, we analyzed the applicability of these results to alginate-based magnetic hydrogel grippers that bended in response to an applied magnetic field. Remarkably, our study demonstrated that the dehydration of the magnetic hydrogels under compression facilitated their bending response.

19.
Cryst Growth Des ; 23(6): 4032-4040, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37304398

RESUMEN

Crystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process.

20.
ACS Appl Mater Interfaces ; 15(27): 32597-32609, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37390355

RESUMEN

The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Hidrogeles/química , Sales (Química) , Péptidos , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA