RESUMEN
For many years, it was postulated that the brain is the organ behind the barrier with an autonomous need for its maintenance. This view has been changed by the concept that the central nervous system is sensitive to the immune processes occurring in the periphery as well as to the infiltration of peripheral immune cells. However, how the immune system might contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), remains unclear. PD is a chronic neurodegenerative disorder that affects motor and cognitive functions. Although the precise cause of PD is unknown, studies in both mice and human suggest that alterations in the innate immunity may play a critical role in modulating PD progression. Here, we review recent advancements in our understanding of inflammation and the innate immune mechanisms in PD pathology.
Asunto(s)
Inmunidad Innata/inmunología , Neuroinmunomodulación/inmunología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Animales , Sistema Nervioso Central/inmunología , Humanos , Inflamación/inmunología , Ratones , Microglía/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-ß negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.
Asunto(s)
Catepsina K , Macrófagos , Fagosomas , Humanos , Catepsina K/metabolismo , Colágeno/metabolismo , Pulmón , Macrófagos/metabolismo , Fagosomas/metabolismoRESUMEN
Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.
Asunto(s)
Vesículas Extracelulares , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/patología , Degeneración Macular/metabolismo , FenotipoRESUMEN
Non-convulsive status epilepticus (NCSE) is a prolonged epileptic seizure with subtle symptoms that may delay clinical diagnosis. Emerging experimental evidence shows brain pathology and epilepsy development following NCSE. New diagnostic/prognostic tools are therefore needed for earlier and better stratification of treatment. Here we examined whether NCSE initiates a peripheral immune response in blood serum from rats that experienced electrically-induced NCSE. ELISA analysis showed an acute transient increase in serum protein levels including interleukin-6 6 h post-NCSE, similar to the immune reaction in the brain. At 4 weeks post-NCSE, when 75% of rats subjected to NCSE had also developed spontaneous seizures, several immune proteins were altered. In particular, markers associated with microglia, macrophages and antigen presenting cells, such as CD68, MHCII, and galectin-3, were increased and the T-cell marker CD4 was decreased in serum compared to both non-stimulated controls and NCSE rats without spontaneous seizures, without correlation to interictal epileptiform activity. Analyses of serum following intracerebral injection of lipopolysaccharide (LPS) showed an acute increase in interleukin-6, but at 4 weeks unaltered levels of MHCII and galectin-3, an increase in CD8 and CD11b and a decrease in CD68. None of the increased serum protein levels after NCSE or LPS could be confirmed in spleen tissue. Our data identifies the possibility to detect peripheral changes in serum protein levels following NCSE, which may be related to the development of subsequent spontaneous seizures.
RESUMEN
Self-reports of subjective hearing difficulties by people with hearing loss may be a useful complement to audiometry in hearing aid rehabilitation. To be useful, such self-reports need to be reliable. This study investigated the reliability and the validity of the Swedish Hearing Handicap Inventory for the Elderly (Screening Version; HHIE-S). Sixty-nine participants completed a questionnaire before hearing aid rehabilitation. Of these individuals, 49 completed hearing aid rehabilitation (aged between 23 and 94 years), and 41 of these 49 participants completed the questionnaire after completing the rehabilitation. The Swedish HHIE-S exhibited good internal consistency (Cronbach's alpha coefficient of .77). The questionnaire was effective for evaluating hearing aid rehabilitation, and a statistically significant reduction in hearing difficulties was observed. The clinicians found the questionnaire easy to administer and effective in hearing aid rehabilitation. The findings from the study support the use of the HHIE-S in clinical practice.