Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037456

RESUMEN

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Ustilago , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Ustilago/metabolismo , Proteínas Co-Represoras/metabolismo , Carcinogénesis , Proteínas Fúngicas/metabolismo
2.
New Phytol ; 240(5): 1976-1989, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37680042

RESUMEN

Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.


Asunto(s)
Enfermedades de las Plantas , Ustilago , Enfermedades de las Plantas/microbiología , Ustilago/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Virulencia , Zea mays/microbiología
3.
New Phytol ; 220(1): 249-261, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29916208

RESUMEN

Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases. Genetic, biochemical and microscopic experiments were performed to elucidate the in vitro and in planta functions of U. maydis UmFly1. U. maydis ∆umfly1 mutants show significantly reduced virulence, which coincides with reduced cleavage of the maize chitinase ZmChiA within its chitin-binding domain. Moreover, deletion of umfly1 affected the cell separation of haploid U. maydis sporidia. This phenotype is associated with posttranslational activation of the endogenous chitinase UmCts1. Genetic complementation of the ∆umfly1 mutant with a homologous gene from closely related, but nonpathogenic, yeast fully rescued the cell separation defect in vitro, but it could not recover the ∆umfly1 defect in virulence and cleavage of the maize chitinase. We report on the dual function of the secreted fungalysin UmFly1. We hypothesize that co-evolution of U. maydis with its host plant extended the endogenous function of UmFly1 towards the modulation of plant chitinase activity to promote infection.


Asunto(s)
Proteínas Fúngicas/metabolismo , Metaloproteasas/metabolismo , Ustilago/enzimología , Quitinasas/genética , Quitinasas/metabolismo , Secuencia Conservada , Evolución Molecular , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Esporas Fúngicas/fisiología , Ustilago/genética , Factores de Virulencia/metabolismo , Zea mays/microbiología
4.
Mol Microbiol ; 92(1): 10-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24521437

RESUMEN

Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. Δcfwor1 mutants produce sclerotium-like structures and rough hyphae, which are covered with a black extracellular matrix. These mutants do not sporulate and are no longer virulent on tomato. A CE.CfWor1 transformant that constitutively expresses CfWor1 produces fewer spores with altered morphology and is also reduced in virulence. RNA-seq and RT-qrtPCR analyses suggest that reduced virulence of Δcfwor1 mutants is due to global downregulation of transcription, translation and mitochondrial respiratory chain. The reduced virulence of the CE.CfWor1 transformant is likely due to downregulation of effector genes. Complementation of a non-virulent Δfosge1 (Wor1-homologue) mutant of Fusarium oxysporum f. sp. lycopersici with CfWor1 restored expression of the SIX effector genes in this fungus, but not its virulence. Chimeric proteins of CfWor1/FoSge1 also only partially restored defects of the Δfosge1 mutant, suggesting that these transcriptional regulators have functionally diverged. Altogether, our results suggest that CfWor1 primarily regulates development of C. fulvum, which indirectly affects the expression of a subset of virulence genes.


Asunto(s)
Cladosporium/genética , Cladosporium/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Solanum lycopersicum/microbiología , Cladosporium/crecimiento & desarrollo , Evolución Molecular , Fusarium/genética , Prueba de Complementación Genética , Hifa/genética , Hifa/crecimiento & desarrollo , Mutación , Filogenia , Hojas de la Planta/microbiología , Virulencia
5.
PLoS Genet ; 8(11): e1003088, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209441

RESUMEN

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Asunto(s)
Adaptación Fisiológica/genética , Cladosporium/genética , Genoma , Interacciones Huésped-Patógeno , Secuencia de Bases , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Filogenia , Pinus/genética , Pinus/parasitología , Enfermedades de las Plantas/genética
6.
Mol Plant Microbe Interact ; 27(8): 846-57, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24678832

RESUMEN

The Cf-5 gene of tomato confers resistance to strains of the fungal pathogen Cladosporium fulvum carrying the avirulence gene Avr5. Although Cf-5 has been cloned, Avr5 has remained elusive. We report the cloning of Avr5 using a combined bioinformatic and transcriptome sequencing approach. RNA-Seq was performed on the sequenced race 0 strain (0WU; carrying Avr5), as well as a race 5 strain (IPO 1979; lacking a functional Avr5 gene) during infection of susceptible tomato. Forty-four in planta-induced C. fulvum candidate effector (CfCE) genes of 0WU were identified that putatively encode a secreted, small cysteine-rich protein. An expressed transcript sequence comparison between strains revealed two polymorphic CfCE genes in IPO 1979. One of these conferred avirulence to IPO 1979 on Cf-5 tomato following complementation with the corresponding 0WU allele, confirming identification of Avr5. Complementation also led to increased fungal biomass during infection of susceptible tomato, signifying a role for Avr5 in virulence. Seven of eight race 5 strains investigated escape Cf-5-mediated resistance through deletion of the Avr5 gene. Avr5 is heavily flanked by repetitive elements, suggesting that repeat instability, in combination with Cf-5-mediated selection pressure, has led to the emergence of race 5 strains deleted for the Avr5 gene.


Asunto(s)
Cladosporium/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Transcriptoma , Secuencia de Bases , Mapeo Cromosómico , Cladosporium/patogenicidad , Clonación Molecular , Biología Computacional , Eliminación de Gen , Prueba de Complementación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Solanum lycopersicum/inmunología , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Enfermedades de las Plantas/inmunología , ARN de Hongos/química , ARN de Hongos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ARN , Virulencia , Factores de Virulencia
7.
New Phytol ; 198(4): 1203-1214, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23448507

RESUMEN

· α-Tomatine is an antifungal glycoalkaloid that provides basal defense to tomato (Solanum lycopersicum). However, tomato pathogens overcome this basal defense barrier by the secretion of tomatinases that degrade α-tomatine into the less fungitoxic compounds ß-tomatine and tomatidine. Although pathogenic on tomato, it has been reported that the biotrophic fungus Cladosporium fulvum is unable to detoxify α-tomatine. · Here, we present a functional analysis of the glycosyl hydrolase (GH10), CfTom1, which is orthologous to fungal tomatinases. · We show that C. fulvum hydrolyzes α-tomatine into tomatidine in vitro and during the infection of tomato, which is fully attributed to the activity of CfTom1, as shown by the heterologous expression of this enzyme in tomato. Accordingly, ∆cftom1 mutants of C. fulvum are more sensitive to α-tomatine and are less virulent than the wild-type fungus on tomato. · Although α-tomatine is thought to be localized in the vacuole, we show that it is also present in the apoplast, where it is hydrolyzed by CfTom1 on infection. The accumulation of tomatidine during infection appears to be toxic to tomato cells and does not suppress defense responses, as suggested previously. Altogether, our results show that CfTom1 is responsible for the detoxification of α-tomatine by C. fulvum, and is required for full virulence of this fungus on tomato.


Asunto(s)
Cladosporium/patogenicidad , Tomatina/análogos & derivados , Cladosporium/enzimología , Cladosporium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Solanum lycopersicum/microbiología , Mutación/genética , Filogenia , Hojas de la Planta/microbiología , Tomatina/química , Tomatina/metabolismo , Virulencia
8.
Proc Natl Acad Sci U S A ; 107(16): 7610-5, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368413

RESUMEN

Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis, one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.


Asunto(s)
Cladosporium/metabolismo , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Modelos Biológicos , Datos de Secuencia Molecular , Necrosis , Péptidos/química , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Unión Proteica , Virulencia
10.
Front Plant Sci ; 13: 853106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360318

RESUMEN

During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.

11.
Nat Commun ; 13(1): 6003, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224193

RESUMEN

Smut fungi comprise one of the largest groups of fungal plant pathogens causing disease in all cereal crops. They directly penetrate host tissues and establish a biotrophic interaction. To do so, smut fungi secrete a wide range of effector proteins, which suppress plant immunity and modulate cellular functions as well as development of the host, thereby determining the pathogen's lifestyle and virulence potential. The conserved effector Erc1 (enzyme required for cell-to-cell extension) contributes to virulence of the corn smut Ustilago maydis in maize leaves but not on the tassel. Erc1 binds to host cell wall components and displays 1,3-ß-glucanase activity, which is required to attenuate ß-glucan-induced defense responses. Here we show that Erc1 has a cell type-specific virulence function, being necessary for fungal cell-to-cell extension in the plant bundle sheath and this function is fully conserved in the Erc1 orthologue of the barley pathogen Ustilago hordei.


Asunto(s)
Ustilago , beta-Glucanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Enfermedades de las Plantas/microbiología , Ustilago/metabolismo , Zea mays/metabolismo , beta-Glucanos/metabolismo
13.
J Fungi (Basel) ; 7(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513785

RESUMEN

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.

14.
BMC Plant Biol ; 10: 58, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20370910

RESUMEN

BACKGROUND: Excessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions. RESULTS: Under control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles. CONCLUSIONS: Plants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline conditions. The localization of QTL for these traits and the identification of lines with specific antioxidant and growth responses may be useful for breeding potentially salt tolerant tomato cultivars having higher antioxidant levels under nonstress and salt stress conditions.


Asunto(s)
Antioxidantes/metabolismo , Sitios de Carácter Cuantitativo/genética , Tolerancia a la Sal/genética , Solanum/genética , Alelos , Ascorbato Peroxidasas , Catalasa/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Flavonoides/metabolismo , Endogamia , Peroxidasas/metabolismo , Fenoles/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Solanum/anatomía & histología , Solanum/enzimología , Solanum/crecimiento & desarrollo , Solubilidad/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo
15.
Mol Plant Pathol ; 20(12): 1710-1721, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603622

RESUMEN

To facilitate infection, pathogens deploy a plethora of effectors to suppress basal host immunity induced by exogenous microbe-associated or endogenous damage-associated molecular patterns (DAMPs). In this study, we have characterized family 17 glycosyl hydrolases of the tomato pathogen Cladosporium fulvum (CfGH17) and studied their role in infection. Heterologous expression of CfGH17-1 to 5 by potato virus X in different tomato cultivars showed that CfGH17-1 and CfGH17-5 enzymes induce cell death in Cf-0, Cf-1 and Cf-5 but not in Cf-Ecp3 tomato cultivars or tobacco. Moreover, CfGH17-1 orthologues from other phytopathogens, including Dothistroma septosporum and Mycosphaerella fijiensis, also trigger cell death in tomato. CfGH17-1 and CfGH17-5 are predicted to be ß-1,3-glucanases and their enzymatic activity is required for the induction of cell death. CfGH17-1 hydrolyses laminarin, a linear 1,3-ß-glucan with 1,6-ß linkages. CfGH17-1 expression is down-regulated during the biotrophic phase of infection and up-regulated during the necrotrophic phase. Deletion of CfGH17-1 in C. fulvum did not reduce virulence on tomato, while constitutive expression of CfGH17-1 decreased virulence, suggesting that abundant presence of CfGH17-1 during biotrophic growth may release a DAMP that activates plant defence responses. Under natural conditions CfGH17-1 is suggested to play a role during saprophytic growth when the fungus thrives on dead host tissue, which is in line with its high levels of expression at late stages of infection when host tissues have become necrotic. We suggest that CfGH17-1 releases a DAMP from the host cell wall that is recognized by a yet unknown host plant receptor.


Asunto(s)
Ascomicetos/enzimología , Cladosporium/enzimología , N-Glicosil Hidrolasas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Ascomicetos/patogenicidad , Muerte Celular , Cladosporium/patogenicidad , Células Vegetales
16.
Annu Rev Phytopathol ; 57: 411-430, 2019 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-31337276

RESUMEN

Smut fungi are a large group of biotrophic plant pathogens that infect mostly monocot species, including economically relevant cereal crops. For years, Ustilago maydis has stood out as the model system to study the genetics and cell biology of smut fungi as well as the pathogenic development of biotrophic plant pathogens. The identification and functional characterization of secreted effectors and their role in virulence have particularly been driven forward using the U. maydis-maize pathosystem. Today, advancing tools for additional smut fungi such as Ustilago hordei and Sporisorium reilianum, as well as an increasing number of available genome sequences, provide excellent opportunities to investigate in parallel the effector function and evolution associated with different lifestyles and host specificities. In addition, genome analyses revealed similarities in the genomic signature between pathogenic smuts and epiphytic Pseudozyma species. This review elaborates on how knowledge about fungal lifestyles, genome biology, and functional effector biology has helped in understanding the biology of this important group of fungal pathogens. We highlight the contribution of the U. maydis model system but also discuss the differences from other smut fungi, which raises the importance of comparative genomic and genetic analyses in future research.


Asunto(s)
Ustilaginales , Ustilago , Proteínas Fúngicas , Hongos , Enfermedades de las Plantas , Zea mays
17.
Nat Commun ; 10(1): 1576, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952847

RESUMEN

Ustilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP).


Asunto(s)
Proteínas Fúngicas/fisiología , Ustilago/enzimología , Factores de Virulencia/fisiología , Zea mays/microbiología , Secuencias de Aminoácidos , Proteínas Fúngicas/química , Modelos Moleculares , Tumores de Planta/microbiología , Factores de Virulencia/química , Zea mays/inmunología
18.
Mol Plant Pathol ; 19(12): 2603-2622, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30047221

RESUMEN

The success of plant-pathogenic fungi mostly relies on their arsenal of virulence factors which are expressed and delivered into the host tissue during colonization. The biotrophic fungal pathogen Ustilago hordei causes covered smut disease on both barley and oat. In this study, we combined cytological, genomics and molecular biological methods to achieve a better understanding of the molecular interactions in the U. hordei-barley pathosystem. Microscopic analysis revealed that U. hordei densely colonizes barley leaves on penetration, in particular the vascular system. Transcriptome analysis of U. hordei at different stages of host infection revealed differential expression of the transcript levels of 273 effector gene candidates. Furthermore, U. hordei transcriptionally activates core effector genes which may suppress even non-host early defence responses. Based on expression profiles and novelty of sequences, knockout studies of 14 effector candidates were performed in U. hordei, which resulted in the identification of four virulence factors required for host colonization. Yeast two-hybrid screening identified potential barley targets for two of the effectors. Overall, this study provides a first systematic analysis of the effector repertoire of U. hordei and identifies four effectors (Uvi1-Uvi4) as virulence factors for the infection of barley.


Asunto(s)
Genómica/métodos , Hordeum/microbiología , Interacciones Huésped-Patógeno/genética , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Ustilago/genética , Ustilago/patogenicidad , Carbohidratos/química , Progresión de la Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Estudios de Asociación Genética , Epidermis de la Planta/microbiología , Hojas de la Planta/microbiología , Virulencia
19.
Microbiol Spectr ; 5(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28155813

RESUMEN

Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.


Asunto(s)
Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Micotoxinas/metabolismo , Factores de Virulencia/metabolismo
20.
Curr Opin Plant Biol ; 20: 19-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24780462

RESUMEN

Filamentous plant pathogens that establish biotrophic interactions need to avoid plant immune responses. Recent findings from different pathosystems suggest that sufficient suppression of host immunity is based on the modulation of a rather limited number of host targets. Microbial strategies to target host physiology dependent on the duration of biotrophy, the style of host tissue colonization and the degree of interference with plant development. In this article, we present current concepts in biotrophic virulence strategies and discuss mechanisms of pathogen adaptation and effector specialization.


Asunto(s)
Cladosporium/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Ustilago/fisiología , Interacciones Huésped-Patógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA