Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Appl Microbiol Biotechnol ; 106(18): 6139-6156, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35945361

RESUMEN

Clavulanic acid (CA) is a clinically important secondary metabolite used to treat infectious diseases. We aimed to decipher complex regulatory mechanisms acting in CA biosynthesis by analyzing transcriptome- and proteome-wide alterations in an industrial CA overproducer Streptomyces clavuligerus strain, namely DEPA and its wild-type counterpart NRRL3585. A total of 924 differentially expressed genes (DEGs) and 271 differentially produced proteins (DPPs) were obtained by RNA-seq and nanoLC-MS/MS analyses, respectively. In particular, CA biosynthetic genes, namely, car (cad), cas2, oat2, pah, bls, ceas2, orf12, and claR, a cluster situated regulatory (CSR) gene, were significantly upregulated as shown by RNA-seq. Enzymes of clavam biosynthesis were downregulated considerably in the DEPA strain, while the genes involved in the arginine biosynthesis, one of the precursors of CA pathway, were overexpressed. However, the biosynthesis of the other CA precursor, glyceraldehyde-3-phosphate (G3P), was not affected. CA overproduction in the DEPA strain was correlated with BldD, BldG, BldM, and BldN (AdsA) overrepresentation. In addition, TetR, WhiB, and Xre family transcriptional regulators were shown to be significantly overrepresented. Several uncharacterized/unknown proteins differentially expressed in the DEPA strain await further studies for functional characterization. Correlation analysis indicated an acceptable degree of consistency between the transcriptome and proteome data. The study represents the first integrative-omics analysis in a CA overproducer S. clavuligerus strain, providing insights into the critical control points and potential rational engineering targets for a purposeful increase of CA yields in strain improvement. KEY POINTS: ∙ Transcriptome and proteome-wide alterations in industrial CA overproducer strain DEPA ∙ An acceptable degree of consistency between the transcriptome and proteome data ∙ New targets to be exploited for rational engineering.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteoma , Ácido Clavulánico , Proteoma/metabolismo , Streptomyces , Espectrometría de Masas en Tándem
2.
Connect Tissue Res ; 62(2): 226-237, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581853

RESUMEN

Aim: The aim of this study was to evaluate the effects of standard culture medium and chondrogenic differentiation medium with PRP on chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells (rabbit DPSCs) that are transfected with transforming growth factor-beta 1 (TGF-B1) gene, based on the hypothesis of TGF- B1 and PRP can be effective on the chondrogenesis of stem cells. Materials and Methods: Rabbit DPSCs were characterized by using flow cytometry, immunofluorescent staining, quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and differentiation tests. For the characterization, CD29, CD44 and CD45 mesenchymal cell markers were used. Rabbit DPSCs were transfected with TGF-B1 gene using electroporation technique in group 1; with PRP 10% in group 2; with chondrogenic medium in group 3; with both chondrogenic medium and PRP in group 4. DPSCs were cultured in medium with 10% inactive PRP in group 5, chondrogenic medium in group 6, chondrogenic medium with PRP 10% in group 7. SOX9, MMP13 and Aggrecan gene expression levels were evaluated in 3, 6, 12. and 24. days by qRT-PCR. Results: The expression levels of SOX9, MMP13 and Aggrecan were higher in group 2, 3 and group 7 in 3th day however in 24th day group 7 and group 2 were found higher. The expression levels changed by time-dependent. The extracellular matrix of the cells in experimental groups were positively stained with safranin O and toluidine blue. Conclusion: The combination in culture medium of TGF-B1 gene transfection and 10% PRP accelerates the chondrogenic differentiation of DPSCs.


Asunto(s)
Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Agrecanos , Animales , Diferenciación Celular , Células Cultivadas , Condrogénesis , Pulpa Dental , Metaloproteinasa 13 de la Matriz , Conejos , Transfección , Factor de Crecimiento Transformador beta1
3.
Genomics ; 112(5): 3247-3255, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512144

RESUMEN

The mitogenome of Prometheomys schaposchnikowi was characterized for the first time as a circular DNA molecule (16.284 bp), containing 37 coding and 2 non-coding regions. In the mitogenome, ND6 and 8 tRNA genes were encoded on the light chain, while 12 PCGs, 14 tRNAs, 2 rRNAs, D-loop and OL were encoded on the heavy chain. The most common initiation codon in PCGs was ATG. As in many mammals, incomplete stop codons in P. schaposchnikowi were in the COX3, ND1 and ND4. Phylogenetic relationships were revealed using Bayesian method and the 13 PCGs. Seven genera (Arvicola, Dicrostonyx, Lasiopodomys, Myodes, Ondatra, Proedromys and Prometheomys) formed a monophyletic group, while Eothenomys, Microtus and Neodon were paraphyletic. P. schaposchnikowi constituted the most basal group within Arvicolinae. Divergence time estimation suggested that P. schaposchnikowi diversified during the Miocene (16.28 Mya). Further molecular studies are needed to test the distinctiveness and diversity of the genus Prometheomys.


Asunto(s)
Arvicolinae/genética , Genoma Mitocondrial , Animales , Arvicolinae/clasificación , Uso de Codones , Proteínas Mitocondriales/genética , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Origen de Réplica , Turquía
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669748

RESUMEN

Muse cells are adult stem cells that are present in the stroma of several organs and possess an enduring capacity to cope with endogenous and exogenous genotoxic stress. In cell therapy, the peculiar biological properties of Muse cells render them a possible natural alternative to mesenchymal stromal cells (MSCs) or to in vitro-generated pluripotent stem cells (iPSCs). Indeed, some studies have proved that Muse cells can survive in adverse microenvironments, such as those present in damaged/injured tissues. We performed an evaluation of Muse cells' proteome under basic conditions and followed oxidative stress treatment in order to identify ontologies, pathways, and networks that can be related to their enduring stress capacity. We executed the same analysis on iPSCs and MSCs, as a comparison. The Muse cells are enriched in several ontologies and pathways, such as endosomal vacuolar trafficking related to stress response, ubiquitin and proteasome degradation, and reactive oxygen scavenging. In Muse cells, the protein-protein interacting network has two key nodes with a high connectivity degree and betweenness: NFKB and CRKL. The protein NFKB is an almost-ubiquitous transcription factor related to many biological processes and can also have a role in protecting cells from apoptosis during exposure to a variety of stressors. CRKL is an adaptor protein and constitutes an integral part of the stress-activated protein kinase (SAPK) pathway. The identified pathways and networks are all involved in the quality control of cell components and may explain the stress resistance of Muse cells.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Proteoma/metabolismo , Proteómica , Estrés Fisiológico , Línea Celular , Daño del ADN , Ontología de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Mapas de Interacción de Proteínas , Transducción de Señal
5.
Cell Commun Signal ; 18(1): 118, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727501

RESUMEN

BACKGROUND: The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. METHODS: We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. RESULTS: The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. CONCLUSION: We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Especificidad de Órganos , Animales , Antígenos/metabolismo , Plaquetas/fisiología , Degranulación de la Célula , Dieta Alta en Grasa , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Modelos Biológicos , Solubilidad
6.
Eur J Orthod ; 42(3): 305-316, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-31143928

RESUMEN

OBJECTIVES: The aim was to evaluate the effects of mesenchymal stem cell (MSC) transfer to periodontal ligament (PDL) on the inhibition and/or repair of orthodontically induced root resorption (OIRR) during and after arch expansion and on the orthodontic tooth movement (OTM) rate of the maxillary first molar teeth of rats. MATERIAL AND METHODS: Sixty Wistar rats were divided into three groups as the untreated group, MSC and control injections during the expansion period group (EMSC-EC), and MSC and control injections at the retention period group (RMSC-RC). Fifty grams of orthodontic force was applied to the maxillary first molar teeth of the rats for 14 days in the vestibular direction, and then, 20 days of retention was carried out. MSCs and control injections were performed every 3 days in the EC, RC, EMSC, and RMSC groups. At the end of the experiment, samples were prepared for OTM evaluation, mRNA expression analysis, micro-computed tomography measurements, cementum thickness calculations, and structural examinations. RESULTS: The amount of OTM in EMSC group was significantly higher than in EC group (P < 0.001). MSC transfer during the expansion and retention periods reduced the number of resorption lacunae, volumetric and linear resorptive measurements, and cyclooxygenase-2 and receptor activator of nuclear factor kappa B ligand (RANKL) mRNA expression levels, and increased the osteoprotegerin (OPG) expression levels, OPG/RANKL ratio, and cementum thickness in the EMSC and RMSC groups. CONCLUSIONS: MSC transfer to PDL during expansion increased the amount of OTM. Injection of MSC during the retention period was found to be slightly more effective in prevention and/or repair of OIRR than MSC transfer during the expansion period.


Asunto(s)
Células Madre Mesenquimatosas , Resorción Radicular/etiología , Animales , Osteoclastos , Ratas , Ratas Wistar , Técnicas de Movimiento Dental/efectos adversos , Microtomografía por Rayos X
7.
Adv Exp Med Biol ; 1103: 103-113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484225

RESUMEN

Stem cells persist for long periods in the body and experience many intrinsic and extrinsic stresses. For this reason, they present a powerful and effective DNA repair system in order to properly fix DNA damage and avoid the onset of a degenerative process, such as neoplastic transformation or aging. In this chapter, we compare the DNA repair ability of pluripotent stem cells (ESCs, iPSCs, and Muse cells) and other adult stem cells. We also describe personal investigations showing a robust and effective capacity of Muse cells in sensing and repairing DNA following chemical and physical stress. Muse cells can repair DNA through base and nucleotide excision repair mechanisms, BER and NER, respectively. Furthermore, they present a pronounced capacity in repairing double-strand breaks by the nonhomologous end joining (NHEJ) process. The studies addressing the role of DNA damage repair in the biology of stem cells are of paramount importance for comprehension of their functions and, also, for setting up effective and safe stem cell-based therapy.


Asunto(s)
Daño del ADN , Reparación del ADN , Células Madre Pluripotentes/citología , Células Madre Adultas/citología , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología
8.
Cell Prolif ; 56(6): e13401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949664

RESUMEN

Genotoxic injuries converge on senescence-executive program that promotes production of a senescence-specific secretome (SASP). The study of SASP is particularly intriguing, since through it a senescence process, triggered in a few cells, can spread to many other cells and produce either beneficial or negative consequences for health. We analysed the SASP of quiescent mesenchymal stromal cells (MSCs) following stress induced premature senescence (SIPS) by ionizing radiation exposure. We performed a proteome analysis of SASP content obtained from early and late senescent cells. The bioinformatics studies evidenced that early and late SASPs, besides some common ontologies and signalling pathways, contain specific factors. In spite of these differences, we evidenced that SASPs can block in vitro proliferation of cancer cells and promote senescence/apoptosis. It is possible to imagine that SASP always contains core components that have an anti-tumour activity, the progression from early to late senescence enriches the SASP of factors that may promote SASP tumorigenic activity only by interacting and instructing cells of the immune system. Our results on Caco-2 cancer cells incubated with late SASP in presence of peripheral white blood cells strongly support this hypothesis. We evidenced that quiescent MSCs following SIPS produced SASP that, while progressively changed its composition, preserved the capacity to block cancer growth by inducing senescence and/or apoptosis only in an autonomous manner.


Asunto(s)
Células Madre Mesenquimatosas , Secretoma , Humanos , Células CACO-2 , Senescencia Celular , Carcinogénesis/metabolismo , Células Madre Mesenquimatosas/metabolismo
9.
Cryobiology ; 65(2): 93-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22634115

RESUMEN

This study evaluated the protective effects of supplementation with three different sugars on the motility, morphology and DNA integrity of rat epididymal sperm chilled and stored at 4°C Epididymides were obtained from each donor. Rat epididymal sperm was diluted in Ham's F10 plus raffinose, Ham's F10 plus trehalose, Ham's F10 plus fructose, and Ham's F10 medium for control purposes. Thereafter, the extended sperm were chilled and stored in liquid form at 4°C. Sperm motility, morphological abnormalities and DNA damage were determined at 0 and 12h after chilling. No significant difference was observed in any of the parameters evaluated at 0h, before storage (P>0.05). After 12h of storage, all sugar additives led to statistically higher motility, normal sperm morphology and DNA integrity in comparison to the control group. Raffinose gave the best motility percentages (32.86±1.84%) after 12h of storage at 4°C, compared to the other groups (P<0.001). In conclusion, Raffinose, trehalose and fructose provided a better protection of sperm functional parameters against chilling injury, in comparison to the control group.


Asunto(s)
Epidídimo/citología , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Espermatozoides/citología , Animales , Frío , Ensayo Cometa , ADN/genética , Daño del ADN , Epidídimo/metabolismo , Fructosa/metabolismo , Masculino , Rafinosa/metabolismo , Ratas , Ratas Wistar , Motilidad Espermática , Espermatozoides/metabolismo , Trehalosa/metabolismo
10.
Gene ; 841: 146773, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35905846

RESUMEN

The genus Sciurus, a member of the family Sciuridae, is widely distributed in the Holarctic region. To better understand mitogenomic characteristics and to reveal internal phylogenetic relationships of the genus, 20 complete mitogenomes of Turkish tree squirrels were successfully sequenced for the first time, including 19 for S. anomalus (from 16,505 bp to 16,510 bp) and one for S. vulgaris (16,511 bp). The mitogenomes of two species were AT-biased. All tRNAs for two species displayed a typical clover-leaf structure, except for tRNASer(AGY). The tRNA Serine1 (S1)-GCT structure lacked the dihydrouridine (DHU) loop and stem. Based on mitogenomic dataset for phylogeny of Sciurinae, phylogenetic analyses (Bayesian Inference and Maximum Likelihood) did not support monophyly of Sciurus and proposed that S. anomalus, the most basal taxa in the Sciurini tribe, had at least five mitogenome lineages, which were also supported by network analysis. The dissimilarities among the five lineages of S. anomalus ranged from 0.0042 (0.42%) to 0.0062 (0.62%) using K2P sequence pairwise distances. In addition to this mitogenomic analysis result, phylogenetic analyses using the CYTB + D-loop dataset proposed the existence of at least nine lineages for S. anomalus, which was different than those of the previous studies. The current study proposed that the use of mitogenomic data for reconstructing the phylogeny of Turkey's Sciurus holds an important value for revealing evolutionary relationships.


Asunto(s)
Genoma Mitocondrial , Sciuridae , Animales , Teorema de Bayes , Genoma Mitocondrial/genética , Filogenia , ARN de Transferencia , Sciuridae/genética , Turquía
11.
Front Immunol ; 13: 1001633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439128

RESUMEN

Background: Acinetobacter baumannii is one of the most life-threatening multidrug-resistant pathogens worldwide. Currently, 50%-70% of clinical isolates of A. baumannii are extensively drug-resistant, and available antibiotic options against A. baumannii infections are limited. There is still a need to discover specific de facto bacterial antigenic proteins that could be effective vaccine candidates in human infection. With the growth of research in recent years, several candidate molecules have been identified for vaccine development. So far, no public health authorities have approved vaccines against A. baumannii. Methods: This study aimed to identify immunodominant vaccine candidate proteins that can be immunoprecipitated specifically with patients' IgGs, relying on the hypothesis that the infected person's IgGs can capture immunodominant bacterial proteins. Herein, the outer-membrane and secreted proteins of sensitive and drug-resistant A. baumannii were captured using IgGs obtained from patient and healthy control sera and identified by Liquid Chromatography- Tandem Mass Spectrometry (LC-MS/MS) analysis. Results: Using the subtractive proteomic approach, we determined 34 unique proteins captured only in drug-resistant A. baumannii strain via patient sera. After extensively evaluating the predicted epitope regions, solubility, transverse membrane characteristics, and structural properties, we selected several notable vaccine candidates. Conclusion: We identified vaccine candidate proteins that triggered a de facto response of the human immune system against the antibiotic-resistant A. baumannii. Precipitation of bacterial proteins via patient immunoglobulins was a novel approach to identifying the proteins that could trigger a response in the patient immune system.


Asunto(s)
Acinetobacter baumannii , Humanos , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Proteínas Bacterianas , Antibacterianos
12.
STAR Protoc ; 3(4): 101863, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595912

RESUMEN

Analysis of the surfaceome of a blood cell subset requires cell sorting, followed by surface protein enrichment. Here, we present a protocol combining magnetically activated cell sorting (MACS) and surface biotinylation of the target cell subset from human peripheral blood mononuclear cells (PBMCs). We describe the steps for isolating target cells and their in-column surface biotinylation, followed by isolation and mass spectrometry analysis of biotinylated proteins. The protocol enables in-column surface biotinylation of specific cell subsets with minimal membrane disruption.


Asunto(s)
Leucocitos Mononucleares , Proteínas de la Membrana , Humanos , Biotinilación , Leucocitos Mononucleares/química , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fenómenos Magnéticos
13.
Proteome Sci ; 9: 12, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21388532

RESUMEN

BACKGROUND: Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 µM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS. RESULTS: Dose-dependent molecular response to Pb (II) involved a total of 14 up-regulated and 21 down-regulated proteins. The induction of an isoform of glyceraldehyde 3-phosphate dehydrogenase, alcohol dehydrogenase class V, mRNA splicing factor, ATP-dependent RNA helicase, thioredoxin reductase and actin required a Pb (II) dose of at least 50 µM. Analysis of the proteome dynamics of mid-exponential phase cells of P. chrysosporium subjected to 50 µM lead at exposure time intervals of 1, 2, 4 and 8 h, identified a total of 23 proteins in increased and 67 proteins in decreased amount. Overall, the newly induced/strongly up-regulated proteins involved in (i) amelioration of lipid peroxidation products, (ii) defense against oxidative damage and redox metabolism, (iii) transcription, recombination and DNA repair (iv) a yet unknown function represented by a putative protein. CONCLUSION: The present study implicated the particular role of the elements of DNA repair, post-tanscriptional regulation and heterotrimeric G protein signaling in response to Pb (II) stress as shown for the first time for a basidiomycete.

14.
Protein Pept Lett ; 28(2): 205-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32707026

RESUMEN

BACKGROUND: Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE: In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS: A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS: "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION: The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cefamicinas/metabolismo , Homoserina Deshidrogenasa/deficiencia , Proteoma/análisis , Proteoma/metabolismo , Streptomyces/metabolismo , Espectrometría de Masas en Tándem/métodos , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Homoserina Deshidrogenasa/genética , Streptomyces/genética , Streptomyces/crecimiento & desarrollo
15.
Front Bioeng Biotechnol ; 9: 730813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676202

RESUMEN

Senotherapeutics are new drugs that can modulate senescence phenomena within tissues and reduce the onset of age-related pathologies. Senotherapeutics are divided into senolytics and senomorphics. The senolytics selectively kill senescent cells, while the senomorphics delay or block the onset of senescence. Metformin has been used to treat diabetes for several decades. Recently, it has been proposed that metformin may have anti-aging properties as it prevents DNA damage and inflammation. We evaluated the senomorphic effect of 6 weeks of therapeutic metformin treatment on the biology of human adipose mesenchymal stromal cells (MSCs). The study was combined with a proteome analysis of changes occurring in MSCs' intracellular and secretome protein composition in order to identify molecular pathways associated with the observed biological phenomena. The metformin reduced the replicative senescence and cell death phenomena associated with prolonged in vitro cultivation. The continuous metformin supplementation delayed and/or reduced the impairment of MSC functions as evidenced by the presence of three specific pathways in metformin-treated samples: 1) the alpha-adrenergic signaling, which contributes to regulation of MSCs physiological secretory activity, 2) the signaling pathway associated with MSCs detoxification activity, and 3) the aspartate degradation pathway for optimal energy production. The senomorphic function of metformin seemed related to its reactive oxygen species (ROS) scavenging activity. In metformin-treated samples, the CEBPA, TP53 and USF1 transcription factors appeared to be involved in the regulation of several factors (SOD1, SOD2, CAT, GLRX, GSTP1) blocking ROS.

16.
Front Oncol ; 11: 645732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290976

RESUMEN

There are only a few experimental studies which have investigated effects of glucose alone, and glucose in combination with insulin/insulin-like growth factors (IGF) on the growth of colon cancer. In the present study, we studied in vitro in human colorectal cancer cells originating from four Dukes' stages of colorectal cancer the effects of glucose, insulin and IGFs on proliferation, migration, cell cycle progression and gene expression of the IGF system. Growth of colon cancer cells originating from a Dukes' stage A was glucose-dependent, whereas growth of cancer cells from Dukes' stage B, C and D was glucose-independent. Stimulatory effects of insulin and IGFs on cell growth were observed only in colon cancer cells originating from Dukes' stage C and D. IGF-II stimulated migration in Dukes' stage B cells only. The growth stimulatory effects in Dukes' stage C and D colorectal cancer cells were accompanied by G2/M arrest and associated with an increased IGF-IR/IGF-II receptor ratio. In conclusion, our in vitro data suggest that the stimulating effects of glucose, IGFs and insulin on proliferation differ between colorectal cancer cells from early and late Dukes' stages. Stimulatory effects of glucose on proliferation appear predominantly present in stage Dukes' stage A colorectal cancer cells, while in contrast growth factor-mediated stimulation of cell proliferation is more pronounced in Dukes' late stage (metastasized) colorectal cancer cells. Moreover, our study suggests that a stringent glucose control may be important to control tumor growth in early stages of colorectal cancer, while inhibition of the endocrine actions of the IGFs and insulin become more important in the late (metastasized) stages of colorectal cancer to restrain growth of colon cancer cells.

17.
Aging (Albany NY) ; 12(24): 24894-24913, 2020 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-33361524

RESUMEN

The mesenchymal stromal cells (MSCs) residing within the stromal component of visceral adipose tissue appear to be greatly affected by obesity, with impairment of their functions and presence of senescence. To gain further insight into these phenomena, we analyzed the changes in total proteome content and secretome of mouse MSCs after a high-fat diet (HFD) treatment compared to a normal diet (ND). In healthy conditions, MSCs are endowed with functions mainly devoted to vesicle trafficking. These cells have an immunoregulatory role, affecting leukocyte activation and migration, acute inflammation phase response, chemokine signaling, and platelet activities. They also present a robust response to stress. We identified four signaling pathways (TGF-ß, VEGFR2, HMGB1, and Leptin) that appear to govern the cells' functions. In the obese mice, MSCs showed a change in their functions. The immunoregulation shifted toward pro-inflammatory tasks with the activation of interleukin-1 pathway and of Granzyme A signaling. Moreover, the methionine degradation pathway and the processing of capped intronless pre-mRNAs may be related to the inflammation process. The signaling pathways we identified in ND MSCs were replaced by MET, WNT, and FGFR2 signal transduction, which may play a role in promoting inflammation, cancer, and aging.


Asunto(s)
Envejecimiento/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Grasa Intraabdominal/metabolismo , Células Madre Mesenquimatosas/metabolismo , Obesidad/metabolismo , Animales , Granzimas/metabolismo , Proteína HMGB1/metabolismo , Interleucina-1/metabolismo , Grasa Intraabdominal/citología , Leptina/metabolismo , Metionina/metabolismo , Ratones , Proteoma , Proteínas Proto-Oncogénicas c-met/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Vesículas Secretoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
18.
Aging (Albany NY) ; 12(13): 12609-12621, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634118

RESUMEN

White adipose tissue (WAT) is distributed in several depots with distinct metabolic and inflammatory functions. In our body there are subcutaneous (sWAT), visceral (vWAT) and bone marrow (bWAT) fat depots. Obesity affects the size, function and inflammatory state of WATs. In particular, obesity may affect the activity of mesenchymal stromal cells (MSCs) present in WAT. MSCs are a heterogeneous population containing stromal cells, progenitor cells, fibroblasts and stem cells that are able to differentiate among adipocytes, chondrocytes, osteocytes and other mesodermal derivatives.In the first study of this kind, we performed a comparison of the effects of obesity on MSCs obtained from sWAT, vWAT and bWAT. Our study showed that obesity affects mainly the biological functions of MSCs obtained from bone marrow and vWAT by decreasing the proliferation rate, reducing the percentage of cells in S phase and triggering senescence. The onset of senescence was confirmed by expression of genes belonging to RB and P53 pathways.Our study revealed that the negative consequences of obesity on body physiology may also be related to impairment in the functions of the stromal compartment present in the several adipose tissues. This finding provides new insights as to the targets that should be considered for an effective treatment of obesity-related diseases.


Asunto(s)
Tejido Adiposo/citología , Células de la Médula Ósea/citología , Senescencia Celular/fisiología , Células Madre Mesenquimatosas , Obesidad/fisiopatología , Animales , Apoptosis , Diferenciación Celular , Células Cultivadas , Daño del ADN , Reparación del ADN , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
19.
Biotechnol Prog ; 35(1): e2737, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30353996

RESUMEN

One way to monitor minimal residual disease (MRD) is to screen cells for multiple surface markers using flow cytometry. In order to develop an alternative microfluidic based method, isolation of B type acute lymphoblastic cells using two types of antibodies should be investigated. The immunomagnetic beads coated with various antibodies are used to capture the B type acute lymphoblastic cells. Single beads, two types of beads and surface immobilized antibody were used to measure the capture efficiency. Both micro and nanosize immunomagnetic beads can be used to capture B type acute lymphoblastic cells with a minimum efficiency of 94% and maximum efficiency of 98%. Development of a microfluidic based biochip incorporating immunomagnetic beads and surface immobilized antibodies for monitoring MRD can be an alternative to current cost and time inefficient laboratory methods. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2737, 2019.


Asunto(s)
Anticuerpos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Citometría de Flujo , Humanos , Neoplasia Residual/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
20.
Clin Invest Med ; 31(4): E182-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18682041

RESUMEN

PURPOSE: To investigate the possible protective effects of aminoguanidine (AG ) on lung damage in whole body irradiated rats. METHODS: To evaluate the biological damage of radiation on rat lung tissue, lipid peroxidation products were measured using biochemical parameters. Thirty Wistar albino rats were divided into three subgroups: control (C) , irradiation alone (RT), and RT + AG combined. After sacrificing the rats, antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and malondiadehyde (MDA), nitric oxide (NO) levels were evaluated in lung tissue. RESULTS: Administration of AG resulted in an increase in the activities of CAT, SOD and GSHPx in the lungs. All were reduced after radiation. In addition, AG administration resulted in a decrease in both NO and MDA levels in lung compared with the irradiated group. CONCLUSION: Amnoguanidine increased the endogenous antioxidant defence mechanism in rats and protected the animals from radiation-induced lung toxicity. Moreover, AG may protect against ionizing radiation-induced lung damage because of its antioxidant effect.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Guanidinas/uso terapéutico , Pulmón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Traumatismos Experimentales por Radiación/prevención & control , Radiación Ionizante , Síndrome de Dificultad Respiratoria/prevención & control , Animales , Catalasa/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Pulmón/enzimología , Pulmón/efectos de la radiación , Masculino , Malondialdehído/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de la radiación , Traumatismos Experimentales por Radiación/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Irradiación Corporal Total/efectos adversos , Irradiación Corporal Total/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA