Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 14, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350915

RESUMEN

BACKGROUND: The cerebrospinal fluid (CSF) proteome could offer important insights into central nervous system (CNS) malignancies. To advance proteomic research in pediatric CNS cancer, the current study aims to (1) evaluate past mass spectrometry-based workflows and (2) synthesize previous CSF proteomic data, focusing on both qualitative summaries and quantitative re-analysis. MAIN: In our analysis of 11 studies investigating the CSF proteome in pediatric patients with acute lymphoblastic leukemia (ALL) or primary brain tumors, we observed significant methodological variability. This variability negatively affects comparative analysis of the included studies, as per GRADE criteria for quality of evidence. The qualitative summaries covered 161 patients and 134 non-tumor controls, while the application of validation cohort varied among the studies. The quantitative re-analysis comprised 15 B-ALL vs 6 "healthy" controls and 15 medulloblastoma patients vs 22 non-tumor controls. Certain CSF proteins were identified as potential indicators of specific malignancies or stages of neurotoxicity during chemotherapy, yet definitive conclusions were impeded by inconsistent data. There were no proteins with statistically significant differences when comparing cases versus controls that were corroborated across studies where quantitative reanalysis was feasible. From a gene ontology enrichment, we observed that age disparities between unmatched case and controls may mislead to protein correlations more indicative of age-related CNS developmental stages rather than neuro-oncological disease. Despite efforts to batch correct (HarmonizR) and impute missing values, merging of dataset proved unfeasible and thereby limited meaningful data integration across different studies. CONCLUSION: Infrequent publications on rare pediatric cancer entities, which often involve small sample sizes, are inherently prone to result in heterogeneous studies-particularly when conducted within a rapidly evolving field like proteomics. As a result, obtaining clear evidence, such as CSF proteome biomarkers for CNS dissemination or early-stage neurotoxicity, is currently impractical. Our general recommendations comprise the need for standardized methodologies, collaborative efforts, and improved data sharing in pediatric CNS malignancy research. We specifically emphasize the possible importance of considering natural age-related variations in CSF due to different CNS development stages when matching cases and controls in future studies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Espectrometría de Masas , Proteómica , Humanos , Proteómica/métodos , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Proteoma , Proteínas del Líquido Cefalorraquídeo/análisis , Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeo
2.
Nat Commun ; 15(1): 2474, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38503780

RESUMEN

Mass spectrometry (MS)-based proteomics workflows typically involve complex, multi-step processes, presenting challenges with sample losses, reproducibility, requiring substantial time and financial investments, and specialized skills. Here we introduce One-Tip, a proteomics methodology that seamlessly integrates efficient, one-pot sample preparation with precise, narrow-window data-independent acquisition (nDIA) analysis. One-Tip substantially simplifies sample processing, enabling the reproducible identification of >9000 proteins from ~1000 HeLa cells. The versatility of One-Tip is highlighted by nDIA identification of ~6000 proteins in single cells from early mouse embryos. Additionally, the study incorporates the Uno Single Cell Dispenser™, demonstrating the capability of One-Tip in single-cell proteomics with >3000 proteins identified per HeLa cell. We also extend One-Tip workflow to analysis of extracellular vesicles (EVs) extracted from blood plasma, demonstrating its high sensitivity by identifying >3000 proteins from 16 ng EV preparation. One-Tip expands capabilities of proteomics, offering greater depth and throughput across a range of sample types.


Asunto(s)
Proteoma , Cigoto , Humanos , Animales , Ratones , Proteoma/análisis , Células HeLa , Cigoto/química , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos
3.
Nat Biotechnol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302753

RESUMEN

Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA