Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Fish Shellfish Immunol ; 148: 109506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508541

RESUMEN

Paecilomyces variotii (a filamentous fungus), is a promising novel protein source in fish feeds due to its high nutritional value. Also, P. variotii has Microbial-Associated Molecular Patterns (MAMPs) such as glucans and nucleic acids that could modulate the host's immune response. To understand the potential bioactive properties of this fungus in Atlantic salmon (Salmo salar), our study was conducted to evaluate the gene expression of immune-related biomarkers (e.g., cytokines, effector molecules and receptors) on primary cultures from salmon head kidney (HKLs) and spleen leukocytes (SLs) exposed to either UV inactivated or fractions from P. variotii with or without inactivated Moritella viscosa (a skin pathogen in salmonids). Moreover, the effect of the fermentation conditions and down-stream processing on the physical ultrastructure and cell wall glucan content of P. variotii was characterized. The results showed that drying had a significant effect on the cell wall ultrastructure of the fungi and the choice of fermentation has a significant effect on the quantity of ß-glucans in P. variotii. Furthermore, stimulating Atlantic salmon HKLs and SLs with P. variotii and its fractions induced gene expression related to pro-inflammatory (tnfα, il1ß) and antimicrobial response (cath2) in HKLs, while response in SLs was related to both pro-inflammatory and regulatory response (tnfα, il6 and il10). Similarly, the stimulation with inactivated M. viscosa alone led to an up-regulation of genes related to pro-inflammatory (tnfα, il1ß, il6) antimicrobial response (cath2), intra-cellular signalling and recognition of M. viscosa (sclra, sclrb) and a suppression of regulatory response (il10) in both HKLs and SLs. Interestingly, the co-stimulation of cells with P. variotii and M. viscosa induced immune homeostasis (il6, tgfß) and antimicrobial response (cath2) in SLs at 48h. Thus, P. variotii induces immune activation and cellular communication in Atlantic salmon HKLs and SLs and modulates M. viscosa induced pro-inflammatory responses in SLs. Taken together, the results from physical and chemical characterization of the fungi, along with the differential gene expression of key immune biomarkers, provides a theoretical basis for designing feeding trials and optimize diets with P. variotii as a functional novel feed ingredient for Atlantic salmon.


Asunto(s)
Antiinfecciosos , Byssochlamys , Enfermedades de los Peces , Moritella , Salmo salar , Animales , Moritella/genética , Interleucina-10 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Biomarcadores
2.
Fish Shellfish Immunol ; 137: 108758, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105428

RESUMEN

The interplay between nutrition and the immune system is well recognized, and several studies show that experimental diets elicit local morphological changes and alteration of gene and protein expression in the intestinal mucosa of Atlantic salmon. In this study the pathophysiological effects of experimental diets on mucosal responses in the distal intestine of Atlantic salmon were investigated. Atlantic salmon were fed diets with inclusion of soybean meal (SBM) and Cyberlindnera jadinii (CJ) yeast for 7 days. A standard fish meal (FM) diet was used as a control. Morphological, immunohistochemical and gene expression analyses were used to evaluate the presence of immune cells, proliferating cells, and stem cell populations in mucosal compartments of the simple folds in the distal intestine. Fish fed SBM developed morphological changes consistent with SBM induced enteritis. Immunohistochemistry showed an increased presence of apoptotic cells, CD3ϵ and CD8α labelled cells in the simple fold epithelium of SBM group compared with the CJ group. For the investigated genes, expression levels in all three groups were mostly higher in the epithelial compartment of the simple fold than in the compartment beneath the folds. Most changes within the epithelial compartment were observed in fish fed SBM, where expression of CD3ζ, CD8α, MHC I and MHC II were lower than the FM control group. The CJ group had an increased expression of the stem cell marker Lgr5 in the epithelial compartment compared with SBM group. The division of the simple fold into an apical and basal compartment showed that the increase in Lgr5 was evident along the whole length of the simple folds and not confined to the base of the folds. Similarly, proliferation (PCNA, MCM2) and apoptosis (Caspase-3) gene expression was present in the entire length of the simple folds, suggesting that intestinal epithelial cell turnover is not confined to the basal or apical part of the fold. This study shows that the epithelial compartment is active in the early immunoregulatory response towards dietary stimuli and that the level of an intestinal stem cell marker in salmon was influenced by a diet containing CJ yeast.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Saccharomyces cerevisiae , Candida , Intestinos , Mucosa Intestinal/metabolismo , Proteínas/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Glycine max
3.
J Dairy Sci ; 105(3): 2343-2353, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998553

RESUMEN

We examined the effects of substituting soybean meal with either yeast protein from Cyberlindnera jadinii or barley in concentrate feeds on feed intake, ruminal fermentation products, milk production, and milk composition in Norwegian Red (NRF) dairy cows. The concentrate feeds were prepared in pellet form as soy-based (SBM; where soybean meal is included as a protein ingredient), yeast-based (YEA; soybean meal replaced with yeast protein), or barley-based (BAR; soybean meal replaced with barley). The SBM contained 7.0% soybean meal on a dry matter (DM) basis. This was replaced with yeast protein and barley in the YEA and BAR concentrate feeds, respectively. A total of 48 early- to mid-lactation [days in milk ± standard deviation (SD): 103 ± 33.5 d] NRF cows in their first to fourth parity and with initial milk yield of 32.6 kg (SD = 7.7) were allocated into 3 groups, using a randomized block design, after feeding a common diet [SBM and good-quality grass silage: crude protein (CP) and neutral detergent fiber (NDF) content of 181 and 532 g/kg of DM, respectively] for 14 d (i.e., covariate period). The groups (n = 16) were then fed one of the dietary treatments (SBM, YEA, or BAR) for a period of 56 d (i.e., experimental period). The concentrate feeds were offered in split portions from 3 automatic feeders using electronic identification, with ad libitum access to the same grass silage. Dietary treatments had no effect on daily silage intake, total DM intake, or total NDF intake. Dietary CP intake was lower and starch intake was higher in the BAR group compared with the other groups. Ruminal fluid pH, short-chain volatile fatty acid (VFA) concentrations, acetate-to-propionate ratio, and non-glucogenic to glucogenic VFA ratio were not affected by dietary treatments. No effects of the dietary treatments were observed on body weight change, body condition score change, milk yield, energy-corrected milk yield, milk lactose and fat percentages, or their yields. In conclusion, yeast protein can substitute conventional soybean meal in dairy cow diets without adverse effect on milk production and milk composition, given free access to good-quality grass silage.


Asunto(s)
Leche , Saccharomyces cerevisiae , Animales , Candida , Bovinos , Dieta/veterinaria , Digestión , Ingestión de Alimentos , Femenino , Fermentación , Lactancia , Leche/química , Embarazo , Rumen/metabolismo , Ensilaje/análisis , Zea mays
4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163597

RESUMEN

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Asunto(s)
Alimentación Animal , Candida/química , Glycine max/química , Intestinos/metabolismo , Saccharomycetales/química , Salmo salar/crecimiento & desarrollo , Transcriptoma , Animales
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494146

RESUMEN

Ensuring salmon health and welfare is crucial to maximize production in recirculation aquaculture systems. Healthy and robust mucosal surfaces of the skin and intestine are essential to achieve this goal because they are the first immunological defenses and are constantly exposed to multistressor conditions, such as infectious diseases, suboptimal nutrition, and environmental and handling stress. In this work, Atlantic salmon, split from a single cohort, were subjected to acute hypoxia stress or 15-min crowding stress and observed over a 24-h recovery period. Samples were collected from fish at 0, 1, 3, 6, 12 and 24 h post-stress to analyze plasma-circulating markers of endocrine function (cortisol), oxidative stress (glutathione peroxidase) and immune function (interleukin 10 (IL-10), annexin A1). In addition, mucosal barrier function parameters were measured in the skin mucus (Muc-like protein and lysozyme) and distal intestine (simple folds, goblet cell size and goblet cell area). The results showed that both acute stress models induced increases of circulating cortisol in plasma (1 h post-stress), which then returned to baseline values (initial control) at 24 h post-stress. Moreover, the hypoxia stress was mostly related to increased oxidative stress and IL-10 production, whereas the crowding stress was associated with a higher production of Muc-like protein and lysozyme in the skin mucus. Interestingly, in the distal intestine, smaller goblet cells were detected immediately and one hour after post-hypoxia stress, which could be related to rapid release of the cellular content to protect this organ. Finally, the correlation of different markers in the hypoxic stress model showed that the circulating levels of cortisol and IL-10 were directly proportional, while the availability of Muc-like proteins was inversely proportional to the size of the goblet cells. On the other hand, in the crowding stress model, a proportional relationship was established between plasma cortisol levels and skin mucus lysozyme. Our results suggest key differences in energy partitioning between the two acute stress models and support the need for further investigation into the interplay of multistressor conditions and strategies to modulate immunological aspects of mucosal surfaces.


Asunto(s)
Biomarcadores/sangre , Inmunidad Mucosa , Intestinos/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Salmo salar/fisiología , Animales , Glutatión Peroxidasa/sangre , Hidrocortisona/sangre , Hipoxia/sangre , Hipoxia/inmunología , Intestinos/citología , Piel/metabolismo
6.
J Sci Food Agric ; 100(9): 3575-3586, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32077492

RESUMEN

Pig production systems provide multiple benefits to humans. However, the global increase in meat consumption has profound consequences for our earth. This perspective describes two alternative scenarios for improving the sustainability of future pig production systems. The first scenario is a high input-high output system based on sustainable intensification, maximizing animal protein production efficiency on a limited land surface at the same time as minimizing environmental impacts. The second scenario is a reduced input-reduced output system based on selecting animals that are more robust to climate change and are better adapted to transform low quality feed (local feeds, feedstuff co-products, food waste) into meat. However, in contrast to the first scenario, the latter scenario results in reduced predicted yields, reduced production efficiency and possibly increased costs to the consumer. National evaluation of the availability of local feed and feedstuff co-product alternatives, determination of limits to feed sourced from international markets, available land for crop and livestock production, desired production levels, and a willingness to politically enforce policies through subsidies and/or penalties are some of the considerations to combine these two scenarios. Given future novel sustainable alternatives to livestock animal protein, it may become reasonable to move towards an added general premium price on 'protein from livestock animals' to the benefit of promoting higher incomes to farmers at the same time as covering the extra costs of, politically enforced, welfare of livestock animals in sustainable production systems. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Crianza de Animales Domésticos , Porcinos/metabolismo , Animales , Cambio Climático , Abastecimiento de Alimentos , Humanos , Carne/análisis , Porcinos/crecimiento & desarrollo
7.
Environ Sci Technol ; 53(4): 1967-1975, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30653307

RESUMEN

Global population growth and changing diets increase the importance, and challenges, of reducing the environmental impacts of food production. Farmed seafood is a relatively efficient way to produce protein and has already overtaken wild fisheries. The use of protein-rich food crops, such as soy, instead of fishmeal in aquaculture feed diverts these important protein sources away from direct human consumption and creates new environmental challenges. Single cell proteins (SCPs), including bacteria and yeast, have recently emerged as replacements for plant-based proteins in salmon feeds. Attributional life cycle assessment is used to compare salmon feeds based on protein from soy, methanotrophic bacteria, and yeast ingredients. All ingredients are modeled at the industrial production scale and compared based on seven resource use and emissions indicators. Yeast protein concentrate showed drastically lower impacts in all categories compared to soy protein concentrate. Bacteria meal also had lower impacts than soy protein concentrate for five of the seven indicators. When these target meals were incorporated into complete feeds the relative trends remain fairly constant, but benefits of the novel ingredients are dampened by high impacts from the nontarget ingredients. Particularly, primary production requirements (PPR) are about equal and constant across all feeds for both analyses since PPR was driven by fishmeal and oil. The bacteria-based feed has the highest climate change impacts due to the use of methane to feed the bacteria who then release carbon dioxide. Overall, the results of this study suggest that incorporating SCP ingredients into salmon feeds can help reduce the environmental impacts of salmon production. Continued improvements in SCP production would further increase the sustainability of salmon farming.


Asunto(s)
Alimentación Animal , Salmón , Animales , Acuicultura , Explotaciones Pesqueras , Humanos , Alimentos Marinos
8.
Genet Sel Evol ; 51(1): 13, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991944

RESUMEN

BACKGROUND: We used stable isotope profiling (15N and 13C) to obtain indicator phenotypes for feed efficiency in aquaculture. Our objectives were to (1) examine whether atom percent of stable isotopes of nitrogen and carbon can explain more of the variation in feed conversion ratio than growth alone, and (2) estimate the heritabilities of and genetic correlations between feed efficiency, growth and indicator traits as functions of nitrogen and carbon metabolism in various tissues. A 12-day experiment was conducted with 2281 Atlantic salmon parr, with an average initial weight of 21.8 g, from 23 full-sib families that were allocated to 46 family tanks and fed an experimental diet enriched with 15N and 13C. RESULTS: Using leave-one-out cross-validation, as much as 79% of the between-tank variation in feed conversion ratio was explained by growth, indicator traits, and sampling day, compared to 62% that was explained by growth and sampling day alone. The ratio of tissue metabolism, estimated by a change in isotope fractions relative to body growth, was used as an individual indicator for feed efficiency. For these indicator ratio traits, the estimated genetic correlation to feed conversion ratio approached unity but their heritabilities were low (0.06 to 0.11). These results indicate that feed-efficient fish are characterized by allocating a high fraction of their metabolism to growth. Among the isotope indicator traits, carbon metabolism in the liver had the closest estimated genetic correlation with feed conversion ratio on a tank level (- 0.9) but a low estimated genetic correlation with individually recorded feed efficiency indicator ratio traits. The underlying determinants of these correlations are largely unknown. CONCLUSIONS: Our findings show that the use of indicator ratio traits to assess individual feed efficiency in Atlantic salmon has great prospects in selection programs. Given that large quantities of feeds with contrasting isotope profiles of carbon and/or nitrogen can be produced cost-effectively, the use of stable isotopes to monitor nitrogen and carbon metabolism in various tissues has potential for large-scale recording of individual feed efficiency traits, without requiring individual feed intake to be recorded.


Asunto(s)
Acuicultura/métodos , Salmo salar/genética , Selección Genética/genética , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cruzamiento/métodos , Isótopos de Carbono/metabolismo , Dieta , Genotipo , Nitrógeno/metabolismo , Isótopos de Nitrógeno/metabolismo , Fenotipo , Carácter Cuantitativo Heredable , Salmo salar/fisiología , Aumento de Peso/genética
9.
J Sci Food Agric ; 99(1): 13-24, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29797494

RESUMEN

Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Proteínas/análisis , Algas Marinas/química , Animales , Glucanos/análisis , Glucanos/metabolismo , Valor Nutritivo , Polisacáridos/análisis , Polisacáridos/metabolismo , Proteínas/metabolismo , Algas Marinas/metabolismo
10.
J Sci Food Agric ; 97(3): 733-742, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27558451

RESUMEN

The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Acuicultura , Peces/crecimiento & desarrollo , Abastecimiento de Alimentos , Proteínas Fúngicas/administración & dosificación , Salud Global , Levaduras/aislamiento & purificación , Aminoácidos/análisis , Alimentación Animal/economía , Animales , Acuicultura/economía , Acuicultura/tendencias , Biomasa , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Producción de Cultivos/economía , Digestión , Fermentación , Peces/metabolismo , Abastecimiento de Alimentos/economía , Agricultura Forestal/economía , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/economía , Humanos , Residuos Industriales/análisis , Residuos Industriales/economía , Lignina/química , Lignina/aislamiento & purificación , Lignina/metabolismo , Desnutrición/economía , Desnutrición/prevención & control , Ciclo del Nitrógeno , Levaduras/química , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
11.
Arch Anim Nutr ; 70(1): 44-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26654382

RESUMEN

Salmon protein hydrolysates (SPH) from two different rest raw materials were evaluated in diets for weaning piglets. Four experimental diets were included in the study: a diet based on plant protein with soy protein as the main protein source (Diet PP), a diet based on fishmeal in exchange for soy protein (Diet FM) and two diets in which different SPH replaced fishmeal in the FM diet. The experimental diets were fed to piglets from the day of weaning until 32 d postweaning. In addition to the record of performance data, an intestinal sampling for mucosal morphometry and microbiota 16S rRNA gene sequencing were performed at day 11 on a subset of the animals. The duodenal villi absorption area was significantly larger in piglets receiving Diets SPH compared with Diet PP (p < 0.02). A significant positive correlation between duodenal villi height and average daily gain during the first 11 d postweaning was detected. Only small differences in intestinal microbiota community and no differences in growth performance were detected between the experimental diets. To conclude, SPH seem to be an interesting novel protein source in weanling piglets.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Hidrolisados de Proteína/metabolismo , Salmo salar , Sus scrofa/fisiología , Alimentación Animal/análisis , Animales , Femenino , Microbioma Gastrointestinal/fisiología , Intestino Delgado/anatomía & histología , Intestino Delgado/microbiología , Masculino , Distribución Aleatoria , Sus scrofa/anatomía & histología , Sus scrofa/crecimiento & desarrollo , Sus scrofa/microbiología
12.
ISME Commun ; 4(1): ycae061, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38800131

RESUMEN

Diet-mediated host-microbiota interplay is a key factor in optimizing the gut function and overall health of the host. Gaining insight into the biological mechanisms behind this relationship is fundamental to finding sustainable, environment-friendly feed solutions in livestock production systems. Here, we apply a multi-omics integration approach to elucidate sustainable diet-associated host-gut microbiota interactions in pigs and we demonstrate novel and biologically relevant host-microbe associations in the gut, driven by a rapeseed meal-based feed (RSF). Interestingly, RSF-diet promoted the abundance of segmented filamentous bacteria Candidatus Arthromitus that was associated with the maintenance of mucosal immunity in the ileum of pigs. In the colon, RSF diet affected host mRNA splicing functions, which may result in different host gene products, through host-microbiota associations, particularly with the Faecalibacterium population, and through the interaction of dietary components such as sinapic acid with the host cells. Moreover, telomere maintenance and organization functions that may determine the overall health of the host were upregulated and notably associated with Subdoligranulum population in the colon of RSF diet-fed pigs. This integrative multi-omics approach provides more insight into the diet-microbiota-host axis, and a better understanding of mechanisms and opportunities to find new strategies for modulating host health and potentially improving caloric and nutritional efficiency in animal production.

13.
Heliyon ; 10(5): e26547, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468924

RESUMEN

Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.

14.
Br J Nutr ; 109(6): 1062-70, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22813713

RESUMEN

An experiment was carried out to study the preventive effect of bacterial meal (BM) produced from natural gas against plant-induced enteropathy in Atlantic salmon (Salmo salar). Salmon were fed a diet based on fish meal (FM) or seven diets with 200 g/kg solvent-extracted soyabean meal (SBM) to induce enteritis in combination with increasing levels of BM from 0 to 300 g/kg. Salmon fed a SBM-containing diet without BM developed typical SBM-induced enteritis. The enteritis gradually disappeared with increasing inclusion of BM. By morphometry, no significant (P>0.05) differences in the size of stretches stained for proliferating cell nuclear antigen were found with 150 g/kg BM compared with the FM diet. Increasing BM inclusion caused a gradual decline in the number of cluster of differentiation 8 α positive (CD8α+) intraepithelial lymphocytes, and fish fed BM at 200 g/kg or higher revealed no significant difference from the FM diet. Histological sections stained with antibody for MHC class II (MHC II) showed that fish with intestinal inflammation had more MHC II-reactive cells in the lamina propria and submucosa, but less in the epithelium and brush border, compared with fish without inflammation. There were no significant (P>0.05) differences in growth among the diets, but the highest levels of BM slightly reduced protein digestibility and increased the weight of the distal intestine. In conclusion, the prevention of SBM-induced enteritis by BM is dose dependent and related to intestinal levels of MHC II- and CD8α-reactive cells.


Asunto(s)
Bacterias/crecimiento & desarrollo , Enteritis/veterinaria , Enfermedades de los Peces/prevención & control , Glycine max/efectos adversos , Linfocitos/inmunología , Salmo salar , Animales , Antígenos CD8/análisis , Enteritis/inmunología , Enteritis/prevención & control , Epitelio/inmunología , Enfermedades de los Peces/etiología , Enfermedades de los Peces/inmunología , Antígenos de Histocompatibilidad Clase II/análisis , Antígenos de Histocompatibilidad Clase II/inmunología , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Tamaño de los Órganos
15.
Front Immunol ; 14: 1125702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993984

RESUMEN

Paraprobiotics (dead/inactivated probiotics) are promising candidates in functional feeds to promote growth performance, modulate intestinal microbiota and enhance immune response of fish. During industrial production, fish are exposed to several stressful conditions such as handling, sub-optimal nutrition and diseases that can lead to reduced growth, increased mortalities and large economical losses. Such problems can be mitigated by use of functional feeds, leading to more-sustainable aquaculture and improved animal welfare. Lactiplantibacillus plantarum strain L-137 is a common bacterium found in fermented Southeast Asian dish made from fish and rice. The benefits of its heat-killed form (HK L-137) related to growth performance and immunomodulation have been studied in farmed fish such as Nile Tilapia (Oreochromis niloticus), striped catfish (Pangasianodon hypophthalmus) and bighead catfish (Clarias macrocephalus). To study if such benefits can also be observed in salmonids, we worked both at in vitro level using an intestinal epithelium cell line from rainbow trout (Oncorhynchus mykiss; RTgutGC) stimulated with HK L-137 (Feed LP20™) and at in vivo level with pre-smolt Atlantic salmon (Salmo salar) fed HK L-137 at different inclusion levels (20, 100 and 500 mg of Feed LP20™ kg-1 feed). In RTgutGC, the results showed that the barrier function of the cell monolayer was strengthened along with an increased production of IL-1ß and a decreased production of Anxa1, indicating a modulation of the immune response. Interestingly, a similar trend was detected at the in vivo level in distal intestine from fish fed the highest inclusion level of HK L-137. Here, a lower production of Anxa1 was also detected (after a 61-day feeding period) in addition to an increase of total plasma IgM in the same group. Furthermore, the RNA-seq analysis showed that HK L-137 was able to modulate the gene expression of pathways related to molecular function, biological process and cellular component in distal intestine, without compromising fish performance and gut microbiota. Taken together, our study has shown that HK L-137 can modulate physiological response of Atlantic salmon, making fish more robust against stressful conditions during production.


Asunto(s)
Cíclidos , Oncorhynchus mykiss , Animales , Calor , Alimentación Animal/análisis , Inmunidad , Inmunomodulación
16.
Animals (Basel) ; 13(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627382

RESUMEN

Atlantic salmon (Salmo salar) is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal (SBM), and soy protein concentrate (SPC) in certain combinations can impact gut health, which has consequences for immunity and welfare, limiting the use of soy products in salmonid feeds. This study sought to address this challenge by evaluating two gut health-targeted enhancements of SBM for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). This study took a multi-disciplinary approach, investigating the effect on growth performance, gut microbiome, and behaviors relevant to welfare in aquaculture. This study suggests that both enhancements of SBM provide benefits for growth performance compared with conventional SBM. Both SBM treatments altered fish gut microbiomes and in the case of ETS, increased the presence of the lactic acid bacteria Enterococcus. For the first time, the effects of marine protein sources and plant protein sources on the coping style of salmon were demonstrated. Fish fed SBM showed a tendency for more reactive behavior compared with those fed the FM-based control. All fish had a similar low response to elicited stress, although ETS-fed fish responded more actively than US-fed fish for a single swimming measure. Furthermore, SBM-fed fish displayed lower repeatability of behavior, which may indicate diminished welfare for intensively farmed fish. The implications of these findings for commercial salmonid aquaculture are discussed.

17.
Poult Sci ; 102(12): 103127, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837676

RESUMEN

The effect of dietary graded levels of Cyberlindnera jadinii yeast (C. jadinii) on growth performance, nutrient digestibility, and gut health of broilers was evaluated from 1 to 34 d of age. A total of 360 male broiler chicks were randomly allocated to 1 of 4 dietary treatments (6 replicate pens each) consisting of a wheat-soybean meal-based pelleted diet (Control or CJ0), and 3 diets in which 10% (CJ10), 20% (CJ20), and 30% (CJ30) of the crude protein were supplied by C. jadinii, by gradually replacing protein-rich ingredients. Body weight and feed intake were measured at d 1, 11, 22, and 32. Pellet temperature, durability, and hardness increased linearly (P < 0.05) with C. jadinii inclusion, with highest (P < 0.05) values for CJ30. Up until d 22, feed conversion ratio (FCR) was similar between treatments (P = 0.169). Overall, increasing C. jadinii inclusion linearly increased (P = 0.047) feed intake but had no effect on weight gain or mortality. FCR increased (P < 0.05) linearly with increasing C. jadinii inclusion but only birds fed CJ30 had a significantly poorer FCR compared to the Control. Ileal digestibility was not affected by C. jadinii inclusion, however, there was a significant linear decrease in crude protein and phosphorus, and a tendency for a decrease in fat digestibility. Apparent metabolizable energy (AME) decreased (P < 0.001) quadratically with increasing C. jadinii and was significantly lower in CJ30 compared to the Control. Ileal concentrations of volatile fatty acids (VFAs) were not affected by C. jadinii inclusion, but butyric acid and total VFAs were linearly and quadratically increased and were significantly higher in cecal digesta of birds fed CJ20 and CJ30. Increasing C. jadinii inclusion was associated with an increase (P < 0.05) in the relative abundance of lactobacillus in the ileum and cecum. In conclusion, C. jadinii yeast can supply up to 20% of the total dietary protein without negatively affecting performance, digestibility, or gut health of broilers. The potential confounding role of feed processing and C. jadinii cell wall components on broiler performance is discussed.


Asunto(s)
Pollos , Saccharomyces cerevisiae , Animales , Masculino , Candida , Alimentación Animal/análisis , Digestión , Dieta/veterinaria , Nutrientes/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Suplementos Dietéticos
18.
Foods ; 12(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297376

RESUMEN

Supplementing ruminants' diet with seaweed has shown positive effect on meat quality and micronutrients important for human health. The objective of the present study was to investigate the use of Saccharina latissima in a lamb diet to improve the eating quality and nutritional value of meat. Six-month-old female Norwegian White lambs (n = 24) were fed, 35 days pre-slaughter, three different diets: a control (CON) and two seaweed diets (SW); supplemented with either 2.5% (SW1) or 5% (SW2). The quality properties of longissimus thoracis et lumborum (LTL) and semimembranosus with adductor (SM+ADD) muscles were examined. The dietary inclusion of seaweed reduced cooking loss and shear force of lamb meat, although the effect was not significant at both supplementation levels. SW1 fed lambs showed a significantly (p < 0.05) improved meat color stability and antioxidant potential. Seaweed also reduced lipid oxidation (TBARS) and the warm-over flavor in SM+ADD compared to the CON lamb. Seaweed fed lambs showed an increased content of selenium and iodine in LTL, thereby fulfilling the requirements for the label "source of nutrient" and "significant source of nutrient", respectively. An increased arsenic content in LTL was, however, also observed with seaweed inclusion (to 1.54 and 3.09 µg/100 g in SW1 and SW2 group, respectively). While relevant positive effects were found in meat using seaweed in lamb feed, some optimization of this feed approach will be desirable.

19.
Anim Microbiome ; 5(1): 21, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016467

RESUMEN

BACKGROUND: Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS: The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS: The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.

20.
Foods ; 11(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35407130

RESUMEN

Innovative feeding strategies tend to improve the quality properties of raw material and dry-cured products. In the present study, Norwegian White female lambs (n = 24) were finished during 35 days on three different diets: control (CD), control supplemented with seaweed (5% DM) (SD), and pasture (PD). The quality of raw meat (Semimembranosus + Adductor) and deboned dry-cured lamb leg (fenalår; n = 24) was studied. The heme, SFA, MUFA, and PUFA content in raw meat was not affected with finishing diet. The SD significantly increased the selenium, iodine, and arsenic content in raw meat and in the dry-cured leg the iodine and arsenic. The dry-cured leg from SD-lamb had the highest amount of iodine with 130 µg I/100 g which corresponds to 60% of Adequate Intake. Aldehydes, ketones, and esters in raw meat and dry-cured lamb leg were significantly affected by finishing diet; CD showed increased esters in raw meat and aldehydes in the dry-cured leg compared to SD and PD. The significantly higher content of simple sugars, mannose being the most dominant, was found in the dry-cured leg from SD-lamb compared to CD and PD. Finishing diets had no effect on the taste profile of dry-cured lamb leg. This study showed the potential of seaweed in iodine biofortification of lamb meat and dry-cured products. Iodine-rich meat products should reduce iodine-deficiency among humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA