RESUMEN
Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.
Asunto(s)
Animales Recién Nacidos , Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Trasplante de Islotes Pancreáticos/métodos , Porcinos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Islotes Pancreáticos/diagnóstico por imagen , Diabetes Mellitus Tipo 1/cirugía , Supervivencia de Injerto , Glucemia/análisisRESUMEN
OBJECTIVES: To compare clinical success, procedure time, and complication rates between MRI-guided and CT-guided real-time biopsies of small focal liver lesions (FLL) < 20 mm. METHODS: A comparison of a prospectively collected MRI-guided cohort (n = 30) to a retrospectively collected CT-guided cohort (n = 147) was performed, in which patients underwent real-time biopsies of small FLL < 20 mm in a freehand technique. In both groups, clinical and periprocedural data, including clinical success, procedure time, and complication rates (classified according to CIRSE guidelines), were analyzed. Wilcoxon rank sum test, Pearson's chi-squared test, and Fisher's exact test were used for statistical analysis. Additionally, propensity score matching (PSM) was performed using the following criteria for direct matching: age, gender, presence of liver cirrhosis, liver lobe, lesion diameter, and skin-to-target distance. RESULTS: The median FLL diameter in the MRI-guided cohort was significantly smaller compared to CT guidance (p < 0.001; 11.0 mm vs. 16.3 mm), while the skin-to-target distance was significantly longer (p < 0.001; 90.0 mm vs. 74.0 mm). MRI-guided procedures revealed significantly higher clinical success compared to CT guidance (p = 0.021; 97% vs. 79%) as well as lower complication rates (p = 0.047; 0% vs. 13%). Total procedure time was significantly longer in the MRI-guided cohort (p < 0.001; 38 min vs. 28 min). After PSM (n = 24/n = 38), MRI-guided procedures still revealed significantly higher clinical success compared to CT guidance (p = 0.039; 96% vs. 74%). CONCLUSION: Despite the longer procedure time, freehand biopsy of small FLL < 20 mm under MR guidance can be considered superior to CT guidance because of its high clinical success and low complication rates. CLINICAL RELEVANCE STATEMENT: Biopsy of small liver lesions is challenging due to the size and conspicuity of the lesions on native images. MRI offers higher soft tissue contrast, which translates into a higher success of obtaining enough tissue material with MRI compared to CT-guided biopsies. KEY POINTS: ⢠Image-guided biopsy of small focal liver lesions (FLL) is challenging due to inadequate visualization, leading to sampling errors and false-negative biopsies. ⢠MRI-guided real-time biopsy of FLL < 20 mm revealed significantly higher clinical success (p = 0.021; 97% vs. 79%) and lower complication rates (p = 0.047; 0% vs. 13%) compared to CT guidance. ⢠Although the procedure time is longer, MRI-guided biopsy can be considered superior for small FLL < 20 mm.