RESUMEN
The need for everyday-real-time EEG sensing has resulted in the development of minimalistic and discreet wearable EEG measuring devices. A front runner in this race is in-ear worn device. However, the position of the ear as well as its restricted accessibility poses certain challenges in the design of such devices - from the type of materials used to the placement of electrodes. These choices are important as they will determine the quality of the EEG signal available and in turn the accuracy of the application. We therefore create a simulation model of the human ear, allowing us to understand the impact of these choices on our design of an In-Ear EEG wearable. We first study the signal acquisition characteristics of a proposed gold-plated electrode against two other state-of-the-art electrode materials for in-ear EEG data collection. We further validate this electrode choice by fabricating a personalized silicone-based earpiece and collecting in-situ EEG data. This work explores the properties of using gold plated electrodes in capturing in-ear EEG signals enabling unobtrusive collection of the brain physiology data in real world setting.