Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 87(7): 3755-63, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25751287

RESUMEN

This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors derived from the sample preparation step.


Asunto(s)
Creatina/sangre , Creatinina/sangre , Isótopos de Carbono , Cromatografía Liquida , Creatina/química , Creatinina/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Técnicas de Dilución del Indicador , Estructura Molecular , Espectrometría de Masas en Tándem
2.
Clin Chim Acta ; 431: 96-102, 2014 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-24508629

RESUMEN

The accurate determination of creatinine in serum is essential for the diagnosis and treatment of kidney diseases. The determination of serum creatinine in clinical laboratories is routinely carried out by the Jaffe method or by enzymatic methods that may suffer from interferences. So, the development of reliable, fast and interference-free routine methods for complex serum samples is required. A fast method using isotope dilution mass spectrometry (IDMS) and gas chromatography mass spectrometry (GC-MS) was developed using minimally (13)C labeled creatinine analogs, multiple linear regression and rapid derivatization of creatinine with acetylacetone in 2 min by using focused microwave technology. The proposed method was validated with the analyses of two Certified Reference Materials (ERM-DA252a and ERM-DA253a) and compared with the Jaffe and enzymatic methods when analyzing real serum samples containing variable levels of bilirubin The proposed method is capable of providing accurate serum creatinine concentrations in less than 45 min from sample arrival to full data treatment and can be an alternative routine procedure for creatinine determinations in complex serum samples.


Asunto(s)
Creatinina/sangre , Isótopos de Carbono , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Marcaje Isotópico , Ictericia/sangre , Microondas , Técnica de Dilución de Radioisótopos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA