Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Differentiation ; 138: 100782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38810379

RESUMEN

The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.


Asunto(s)
Mandíbula , Cresta Neural , Animales , Embrión de Pollo , Ratones , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Tipificación del Cuerpo/genética , Cartílago/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/citología , Diferenciación Celular , Pollos/genética , Cilios/metabolismo , Cilios/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/crecimiento & desarrollo , Mandíbula/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/crecimiento & desarrollo , Cresta Neural/citología , Cresta Neural/metabolismo , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética
2.
Development ; 148(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589509

RESUMEN

Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.


Asunto(s)
Remodelación Ósea , Ciliopatías/etiología , Micrognatismo/etiología , Organogénesis , Fenotipo , Animales , Remodelación Ósea/genética , Resorción Ósea , Ciclo Celular/genética , Ciliopatías/diagnóstico , Anomalías Craneofaciales/genética , Susceptibilidad a Enfermedades , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Micrognatismo/diagnóstico , Organogénesis/genética , Osteoblastos/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
3.
J Biol Chem ; 292(36): 15094-15104, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28724630

RESUMEN

Acid hydrolases utilize a carbohydrate-dependent mechanism for lysosomal targeting. These hydrolases acquire a mannose 6-phosphate tag by the action of the GlcNAc-1-phosphotransferase enzyme, allowing them to bind receptors and traffic to endosomes. Loss of GlcNAc-1-phosphotransferase results in hydrolase hypersecretion and profound lysosomal storage. Little, however, is known about how these cellular phenotypes affect the trafficking, activity, and localization of surface glycoproteins. To address this question, we profiled the abundance of surface glycoproteins in WT and CRISPR-mediated GNPTAB-/- HeLa cells and identified changes in numerous glycoproteins, including the uptake receptor LRP1 and multiple receptor tyrosine kinases. Decreased cell surface LRP1 in GNPTAB-/- cells corresponded with a reduction in its steady-state level and less amyloid-ß-40 (Aß40) peptide uptake. GNPTAB-/- cells displayed elevated activation of several kinases including Met receptor. We found increased Met phosphorylation within both the kinase and the docking domains and observed that lower concentrations of pervanadate were needed to cause an increase in phospho-Met in GNPTAB-/- cells. Together, these data suggested a decrease in the activity of the receptor and non-receptor protein-tyrosine phosphatases that down-regulate Met phosphorylation. GNPTAB-/- cells exhibited elevated levels of reactive oxygen species, known to inactivate cell surface and cytosolic phosphatases by oxidation of active site cysteine residues. Consistent with this mode of action, peroxide treatment of parental HeLa cells elevated phospho-Met levels whereas antioxidant treatment of GNPTAB-/- cells reduced phospho-Met levels. Collectively, these findings identify new mechanisms whereby impaired lysosomal targeting can impact the activity and recycling of receptors.


Asunto(s)
Carbohidratos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Células HeLa , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-met/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Células Tumorales Cultivadas
4.
Biomolecules ; 10(5)2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357547

RESUMEN

Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFß1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFß1 signaling that was accompanied by impaired TGFß1-dependent wound closure. We found increased intracellular latent TGFß1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFß-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFß. Co-expression of sortilin and TGFß in HeLa cells resulted in reduced TGFß1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFß1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Mucolipidosis/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Catepsina D/metabolismo , Línea Celular , Células Cultivadas , Fibroblastos/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Transporte de Proteínas , Transducción de Señal , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Regulación hacia Arriba
5.
Cell Rep ; 22(11): 2964-2977, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539424

RESUMEN

Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals.


Asunto(s)
Catepsinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Modelos Animales de Enfermedad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA