Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(10): 1769-1786, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37729906

RESUMEN

Defects in hydroxymethylbilane synthase (HMBS) can cause acute intermittent porphyria (AIP), an acute neurological disease. Although sequencing-based diagnosis can be definitive, ∼⅓ of clinical HMBS variants are missense variants, and most clinically reported HMBS missense variants are designated as "variants of uncertain significance" (VUSs). Using saturation mutagenesis, en masse selection, and sequencing, we applied a multiplexed validated assay to both the erythroid-specific and ubiquitous isoforms of HMBS, obtaining confident functional impact scores for >84% of all possible amino acid substitutions. The resulting variant effect maps generally agreed with biochemical expectations and provide further evidence that HMBS can function as a monomer. Additionally, the maps implicated specific residues as having roles in active site dynamics, which was further supported by molecular dynamics simulations. Most importantly, these maps can help discriminate pathogenic from benign HMBS variants, proactively providing evidence even for yet-to-be-observed clinical missense variants.


Asunto(s)
Hidroximetilbilano Sintasa , Porfiria Intermitente Aguda , Humanos , Hidroximetilbilano Sintasa/química , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Mutación Missense/genética , Porfiria Intermitente Aguda/diagnóstico , Porfiria Intermitente Aguda/genética , Sustitución de Aminoácidos , Simulación de Dinámica Molecular
2.
Clin Chem ; 70(10): 1279-1290, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39185727

RESUMEN

BACKGROUND: Conventional population-based reference intervals (popRIs) are established on the ranking of single measurement results from at least 120 reference individuals. In this study, we aimed to explore a new model for popRIs, utilizing biological variation (BV) data to define the reference interval (RI) limits and compared BV-based popRI from different sample sizes with previously published conventional popRIs from the same population. METHODS: The model is based on defining the population set point (PSP) from single-measurement results of a group of reference individuals and using the total variation around the PSP, derived from the combination of BV and analytical variation, to define the RI limits. Using data from 143 reference individuals for 48 clinical chemistry and hematology measurands, BV-based popRIs were calculated for different sample sizes (n = 16, n = 30, and n = 120) and considered acceptable if they covered 90% of the population. In addition, simulation studies were performed to estimate the minimum number of required reference individuals. RESULTS: The median ratio of the BV-based to conventional RI ranges was 0.98. The BV-based popRIs calculated from the different samples were similar, and most met the coverage criterion. For 25 measurands ≤16 reference individuals and for 23 measurands >16 reference individuals were required to estimate the PSP. CONCLUSIONS: The BV-based popRI model delivered robust RIs for most of the included measurands. This new model requires a smaller group of reference individuals than the conventional popRI model and can be implemented if reliable BV data are available.


Asunto(s)
Variación Biológica Poblacional , Humanos , Valores de Referencia , Tamaño de la Muestra
3.
Clin Chem ; 70(8): 1076-1084, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776253

RESUMEN

BACKGROUND: Reference change values (RCV) are used to indicate a change in analyte concentration that is unlikely to be due to random variation in the patient or the measurement. Current theory describes RCV relative to a first measurement result (X1). We investigate an alternative view predicting the starting point for RCV calculations from X1 and its location in the reference interval. METHODS: Data for serum sodium, calcium, and total protein from the European Biological Variation study and from routine clinical collections were analyzed for the effect of the position of X1 within the reference interval on the following result from the same patient. A model to describe the effect was determined, and an equation to predict the RCV for a sample in a population was developed. RESULTS: For all data sets, the midpoints of the RCVs were dependent on the position of X1 in the population. Values for X1 below the population mean were more likely to be followed by a higher result, and X1 results above the mean were more likely to be followed by lower results. A model using population mean, reference interval dispersion, and result diagnostic variation provided a good fit with the data sets, and the derived equation predicted the changes seen. CONCLUSIONS: We have demonstrated that the position of X1 within the reference interval creates an asymmetrical RCV. This can be described as a regression to the population mean. Adding this concept to the theory of RCVs will be an important consideration in many cases.


Asunto(s)
Sodio , Humanos , Valores de Referencia , Sodio/sangre , Calcio/sangre
4.
Clin Chem ; 70(7): 987-996, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781424

RESUMEN

BACKGROUND: When using biological variation (BV) data, BV estimates need to be robust and representative. High-endurance athletes represent a population under special physiological conditions, which could influence BV estimates. Our study aimed to estimate BV in athletes for metabolism and growth-related biomarkers involved in the Athlete Biological Passport (ABP), by 2 different statistical models. METHODS: Thirty triathletes were sampled monthly for 11 months. The samples were analyzed for human growth hormone (hGH), insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), insulin, and N-terminal propeptide of type III procollagen (P-III-NP) by immunoassay. Bayesian and ANOVA methods were applied to estimate within-subject (CVI) and between-subject BV. RESULTS: CVI estimates ranged from 7.8% for IGFBP-3 to 27.0% for insulin, when derived by the Bayesian method. The 2 models gave similar results, except for P-III-NP. Data were heterogeneously distributed for P-III-NP for the overall population and in females for IGF-1 and IGFBP-3. BV components were not estimated for hGH due to lack of steady state. The index of individuality was below 0.6 for all measurands, except for insulin. CONCLUSIONS: In an athlete population, to apply a common CVI for insulin would be appropriate, but for IGF-1 and IGFBP-3 gender-specific estimates should be applied. P-III-NP data were heterogeneously distributed and using a mean CVI may not be representative for the population. The high degree of individuality for IGF-1, IGFBP-3, and P-III-NP makes them good candidates to be interpreted through reference change values and the ABP.


Asunto(s)
Atletas , Biomarcadores , Hormona de Crecimiento Humana , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Insulina , Humanos , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Biomarcadores/sangre , Masculino , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Femenino , Adulto , Insulina/sangre , Hormona de Crecimiento Humana/sangre , Teorema de Bayes , Procolágeno/sangre , Fragmentos de Péptidos/sangre
5.
Liver Int ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940544

RESUMEN

The porphyrias are a group of rare inborn errors of metabolism associated with various clinical presentations and long-term complications, making them relevant differential diagnoses to consider for many clinical specialities, especially hepatologists, gastroenterologists and dermatologists. To diagnose a patient with porphyria requires appropriate biochemical investigations, as clinical features alone are not specific enough. Furthermore, it is important to be aware that abnormalities of porphyrin accumulation and excretion occur in many other disorders that are collectively far more common than the porphyrias. In this review, we provide an overview of porphyria-related tests with their strengths and limitations, give recommendations on requesting and diagnostic approaches in non-expert and expert laboratories for different clinical scenarios and discuss the role of genetic testing in the porphyrias. To diagnose porphyria in a currently symptomatic patient requires analysis of biochemical markers to demonstrate typical patterns of haem precursors in urine, faeces and blood. The use of genomic sequencing in diagnostic pathways for porphyrias requires careful consideration, and the demonstration of increased porphyrin-related markers is necessary prior to genomic testing in symptomatic patients. In the acute porphyrias, genomic testing is presently a useful adjunct for genetic counselling of asymptomatic family members and the most common cutaneous porphyria, porphyria cutanea tarda, is usually a sporadic, non-hereditary disease. Getting a correct and timely porphyria diagnosis is essential for delivering appropriate care and ensuring best patient outcome.

6.
Clin Chem Lab Med ; 62(5): 844-852, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38062926

RESUMEN

OBJECTIVES: To deliver biological variation (BV) data for serum hepcidin, soluble transferrin receptor (sTfR), erythropoietin (EPO) and interleukin 6 (IL-6) in a population of well-characterized high-endurance athletes, and to evaluate the potential influence of exercise and health-related factors on the BV. METHODS: Thirty triathletes (15 females) were sampled monthly (11 months). All samples were analyzed in duplicate and BV estimates were delivered by Bayesian and ANOVA methods. A linear mixed model was applied to study the effect of factors related to exercise, health, and sampling intervals on the BV estimates. RESULTS: Within-subject BV estimates (CVI) were for hepcidin 51.9 % (95 % credibility interval 46.9-58.1), sTfR 10.3 % (8.8-12) and EPO 27.3 % (24.8-30.3). The mean concentrations were significantly different between sex, but CVI estimates were similar and not influenced by exercise, health-related factors, or sampling intervals. The data were homogeneously distributed for EPO but not for hepcidin or sTfR. IL-6 results were mostly below the limit of detection. Factors related to exercise, health, and sampling intervals did not influence the BV estimates. CONCLUSIONS: This study provides, for the first time, BV data for EPO, derived from a cohort of well-characterized endurance athletes and indicates that EPO is a good candidate for athlete follow-up. The application of the Bayesian method to deliver BV data illustrates that for hepcidin and sTfR, BV data are heterogeneously distributed and using a mean BV estimate may not be appropriate when using BV data for laboratory and clinical applications.


Asunto(s)
Hepcidinas , Interleucina-6 , Femenino , Humanos , Teorema de Bayes , Receptores de Transferrina , Hierro , Atletas
7.
Clin Chem Lab Med ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38987271

RESUMEN

OBJECTIVES: An insulin resistant state is characteristic of patients with type 2 diabetes, polycystic ovary syndrome, and metabolic syndrome. Identification of insulin resistance (IR) is most readily achievable using formulae combining plasma insulin and glucose results. In this study, we have used data from the European Biological Variation Study (EuBIVAS) to examine the biological variability (BV) of IR using the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and the Quantitative Insulin sensitivity Check Index (QUICKI). METHODS: Ninety EuBIVAS non-diabetic subjects (52F, 38M) from five countries had fasting HOMA-IR and QUICKI calculated from plasma glucose and insulin samples collected concurrently on 10 weekly occasions. The within-subject (CVI) and between-subject (CVG) BV estimates with 95 % CIs were obtained by CV-ANOVA after analysis of trends, variance homogeneity and outlier removal. RESULTS: The CVI of HOMA-IR was 26.7 % (95 % CI 25.5-28.3), driven largely by variability in plasma insulin and the CVI for QUICKI was 4.1 % (95 % CI 3.9-4.3), reflecting this formula's logarithmic transformation of glucose and insulin values. No differences in values or BV components were observed between subgroups of men or women below and above 50 years. CONCLUSIONS: The EuBIVAS, by utilising a rigorous experimental protocol, has produced robust BV estimates for two of the most commonly used markers of insulin resistance in non-diabetic subjects. This has shown that HOMA-IR, in particular, is highly variable in the same individual which limits the value of single measurements.

8.
Clin Chem Lab Med ; 62(8): 1483-1489, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38501489

RESUMEN

Analytical performance specifications (APS) are typically established through one of three models: (i) outcome studies, (ii) biological variation (BV), or (iii) state-of-the-art. Presently, The APS can, for most measurands that have a stable concentration, be based on BV. BV based APS, defined for imprecision, bias, total allowable error and allowable measurement uncertainty, are applied to many different processes in the laboratory. When calculating APS, it is important to consider the different APS formulae, for what setting they are to be applied and if they are suitable for the intended purpose. In this opinion paper, we elucidate the background, limitations, strengths, and potential intended applications of the different BV based APS formulas. When using BV data to set APS, it is important to consider that all formulae are contingent on accurate and relevant BV estimates. During the last decade, efficient procedures have been established to obtain reliable BV estimates that are presented in the EFLM biological variation database. The database publishes detailed BV data for numerous measurands, global BV estimates derived from meta-analysis of quality-assured studies of similar study design and automatic calculation of BV based APS.


Asunto(s)
Variación Biológica Poblacional , Humanos
9.
Clin Chem Lab Med ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38965828

RESUMEN

There is a need for standards for generation and reporting of Biological Variation (BV) reference data. The absence of standards affects the quality and transportability of BV data, compromising important clinical applications. To address this issue, international expert groups under the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) have developed an online resource (https://tinyurl.com/bvmindmap) in the form of an interactive mind map that serves as a guideline for researchers planning, performing and reporting BV studies. The mind map addresses study design, data analysis, and reporting criteria, providing embedded links to relevant references and resources. It also incorporates a checklist approach, identifying a Minimum Data Set (MDS) to enable the transportability of BV data and incorporates the Biological Variation Data Critical Appraisal Checklist (BIVAC) to assess study quality. The mind map is open to access and is disseminated through the EFLM BV Database website, promoting accessibility and compliance to a reporting standard, thereby providing a tool to be used to ensure data quality, consistency, and comparability of BV data. Thus, comparable to the STARD initiative for diagnostic accuracy studies, the mind map introduces a Standard for Reporting Biological Variation Data Studies (STARBIV), which can enhance the reporting quality of BV studies, foster user confidence, provide better decision support, and be used as a tool for critical appraisal. Ongoing refinement is expected to adapt to emerging methodologies, ensuring a positive trajectory toward improving the validity and applicability of BV data in clinical practice.

10.
Alzheimers Dement ; 20(2): 1284-1297, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985230

RESUMEN

INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aß42, Aß40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI ) and between-subject (CVG ) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG . Aß42/Aß40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aß42/Aß40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Progresión de la Enfermedad , Proteínas tau
11.
Clin Chem ; 69(9): 1009-1030, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37525518

RESUMEN

BACKGROUND: Personalized reference intervals (prRIs) have the potential to improve individual patient follow-up as compared to population-based reference intervals (popRI). In this study, we estimated popRI and prRIs for 48 clinical chemistry and hematology measurands using samples from the same reference individuals and explored the effect of using group-based and individually based biological variation (BV) estimates to derive prRIs. METHODS: 143 individuals (median age 28 years) were included in the study and had fasting blood samples collected once. From this population, 41 randomly selected subjects had samples collected weekly for 5 weeks. PopRIs were estimated according to Clinical Laboratory Standards Institute EP28 and within-subject BV (CVI) were estimated by CV-ANOVA. Data were assessed for trends and outliers prior to calculation of individual prRIs, based on estimates of (a) within-person BV (CVP), (b) CVI derived in this study, and (c) publically available CVI estimates. RESULTS: For most measurands, the individual prRI ranges were smaller than the popRI range, but overall about half the study participants had a prRI wider than the popRI for 5 or more out of 48 measurands. The dispersion of prRIs based on CVP was wider than that of prRIs based on CVI. CONCLUSION: The prRIs derived in our study varied significantly between different individuals, especially if based on CVP. Our results highlight the limitations of popRIs in interpreting test results of individual patients. If sufficient data from a steady-state situation are available, using prRI based on CVP estimates will provide a RI most specific for an individual patient.


Asunto(s)
Química Clínica , Hematología , Humanos , Adulto , Química Clínica/métodos , Valores de Referencia , Hematología/métodos , Estándares de Referencia
12.
Clin Chem ; 69(5): 500-509, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36786725

RESUMEN

BACKGROUND: Hematological parameters have many applications in athletes, from monitoring health to uncovering blood doping. This study aimed to deliver biological variation (BV) estimates for 9 hematological parameters by a Biological Variation Data Critical Appraisal Checklist (BIVAC) design in a population of recreational endurance athletes and to assess the effect of self-reported exercise and health-related variables on BV. METHODS: Samples were drawn from 30 triathletes monthly for 11 months and measured in duplicate for hematological measurands on an Advia 2120 analyzer (Siemens Healthineers). After outlier and homogeneity analysis, within-subject (CVI) and between-subject (CVG) BV estimates were delivered (CV-ANOVA and log-ANOVA, respectively) and a linear mixed model was applied to analyze the effect of exercise and other related variables on the BV estimates. RESULTS: CVI estimates ranged from 1.3% (95%CI, 1.2-1.4) for mean corpuscular volume to 23.8% (95%CI, 21.6-26.3) for reticulocytes. Sex differences were observed for platelets and OFF-score. The CVI estimates were higher than those reported for the general population based on meta-analysis of eligible studies in the European Biological Variation Database, but 95%CI overlapped, except for reticulocytes, 23.9% (95%CI, 21.6-26.5) and 9.7% (95%CI, 6.4-11.0), respectively. Factors related to exercise and athletes' state of health did not appear to influence the BV estimates. CONCLUSIONS: This is the first BIVAC-compliant study delivering BV estimates that can be applied to athlete populations performing high-level aerobic exercise. CVI estimates of most parameters were similar to the general population and were not influenced by exercise or athletes' state of health.


Asunto(s)
Variación Biológica Poblacional , Lista de Verificación , Humanos , Masculino , Femenino
13.
Clin Chem Lab Med ; 61(5): 741-750, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36537071

RESUMEN

Biological variation (BV) data have many applications in laboratory medicine. However, these depend on the availability of relevant and robust BV data fit for purpose. BV data can be obtained through different study designs, both by experimental studies and studies utilizing previously analysed routine results derived from laboratory databases. The different BV applications include using BV data for setting analytical performance specifications, to calculate reference change values, to define the index of individuality and to establish personalized reference intervals. In this review, major achievements in the area of BV from last decade will be presented and discussed. These range from new models and approaches to derive BV data, the delivery of high-quality BV data by the highly powered European Biological Variation Study (EuBIVAS), the Biological Variation Data Critical Appraisal Checklist (BIVAC) and other standards for deriving and reporting BV data, the EFLM Biological Variation Database and new applications of BV data including personalized reference intervals and measurement uncertainty.


Asunto(s)
Lista de Verificación , Humanos , Valores de Referencia , Estándares de Referencia
14.
Clin Chem Lab Med ; 61(8): 1470-1480, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-36810291

RESUMEN

OBJECTIVES: The diagnosis and monitoring of bleeding and thrombotic disorders depend on correct haemostatic measurements. The availability of high-quality biological variation (BV) data is important in this context. Many studies have reported BV data for these measurands, but results are varied. The present study aims to deliver global within-subject (CVI) and between-subject (CVG) BV estimates for haemostasis measurands by meta-analyses of eligible studies, by assessment with the Biological Variation Data Critical Appraisal Checklist (BIVAC). METHODS: Relevant BV studies were graded by the BIVAC. Weighted estimates for CVI and CVG were obtained via meta-analysis of the BV data derived from BIVAC-compliant studies (graded A-C; whereby A represents optimal study design) performed in healthy adults. RESULTS: In 26 studies BV data were reported for 35 haemostasis measurands. For 9 measurands, only one eligible publication was identified and meta-analysis could not be performed. 74% of the publications were graded as BIVAC C. The CVI and CVG varied extensively between the haemostasis measurands. The highest estimates were observed for PAI-1 antigen (CVI 48.6%; CVG 59.8%) and activity (CVI 34.9%; CVG 90.2%), while the lowest were observed for activated protein C resistance ratio (CVI 1.5%; CVG 4.5%). CONCLUSIONS: This study provides updated BV estimates of CVI and CVG with 95% confidence intervals for a wide range of haemostasis measurands. These estimates can be used to form the basis for analytical performance specifications for haemostasis tests used in the diagnostic work-up required in bleeding- and thrombosis events and for risk assessment.


Asunto(s)
Coagulación Sanguínea , Hemostasis , Adulto , Humanos , Variación Biológica Poblacional , Valores de Referencia
15.
Scand J Clin Lab Invest ; 83(1): 3-7, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476017

RESUMEN

Myeloproliferative neoplasms are hematological disorders characterized by increased production in one or more myeloid cell lines, associated with driver mutations in JAK2-, MPL- and CALR-genes. The aims of this study were to investigate the prevalence of these driver mutations in a Norwegian patient cohort with myeloproliferative neoplasms, and to assess whether the different mutations were associated with different clinical presentation and natural history.Results from 820 patients in whom analysis for JAK2V617F-, CALR- and MPL had been performed at Haukeland University Hospital in the period 2014-2019 were retrieved and analyzed together with clinical variables related to diagnosis, hematological blood parameters and complications, obtained from patient records.We identified 182 cases of myeloproliferative neoplasms: 78 with JAK2V617F, 28 with CALR-mutations, two with MPL-mutations and 23 cases without a driver mutation. There was a lower prevalence of JAK2V617F mutation than expected in the polycythemia vera group, likely related to overdiagnosis. In patients with essential thrombocytosis, we found significantly higher levels of hemoglobin and erythrocyte volume fraction for JAK2V617F-mutated disease, and significantly higher levels of platelets and lactate dehydrogenase for CALR-mutated disease. Patients with JAK2V617F-mutated primary myelofibrosis had significantly higher levels of hemoglobin, and there was an increased number of smokers or former smokers in this group compared to patients with CALR-mutations.Except for a lower prevalence of JAK2V617F-mutation in polycythemia vera, the mutational distribution in our patient cohort was similar to previous findings in other populations. The novel finding of a higher prevalence of smokers in JAK2V617F-mutated primary myelofibrosis warrants further investigation.


Asunto(s)
Calreticulina , Janus Quinasa 2 , Trastornos Mieloproliferativos , Receptores de Trombopoyetina , Humanos , Hemoglobinas , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Calreticulina/metabolismo
16.
Scand J Clin Lab Invest ; 83(7): 470-478, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815437

RESUMEN

OBJECTIVES: There appears to be marked discrepancies between total IgE reference intervals (RIs) in use by many laboratories and those recommended by published studies. The aim of this study was therefore to review total IgE RIs currently reported by Scandinavian and British laboratories and to compare these to published RIs identified by a literature review. METHODS: Relevant laboratories were identified by test directories provided by the national accreditation bodies in Norway, Sweden, Denmark and the UK. Total IgE RIs and their sources were acquired by accessing laboratory user handbooks or by an electronic survey. In addition a literature review of published total IgE RI studies was performed. RESULTS: From 172 accredited laboratories providing total IgE analysis, data was acquired from 122 laboratories. An adult upper reference limit between 81 to 150 kU/L was reported by 89% of these. Denmark and Sweden reported the most harmonised RIs whilst Norway and the UK exhibited the least degree of harmonisation. Published adult (n = 6) and paediatric (n = 6) RI studies reported markedly higher upper limits than those currently in use by the laboratories included in this study. There were also large variations in the number of age strata in use for paediatric RIs. CONCLUSION: This study demonstrates large variations in currently utilised IgE RIs by Scandinavian and British accredited laboratories and most report markedly lower RIs than those recommended by recent RI publications. Many laboratories likely utilise outdated RIs and should consider critically reviewing and updating their RIs.


Asunto(s)
Inmunoglobulina E , Laboratorios Clínicos , Adulto , Niño , Humanos , Valores de Referencia , Encuestas y Cuestionarios , Países Escandinavos y Nórdicos , Reino Unido , Laboratorios Clínicos/normas
17.
Crit Rev Clin Lab Sci ; 59(7): 501-516, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35579539

RESUMEN

Using laboratory test results for diagnosis and monitoring requires a reliable reference to which the results can be compared. Currently, most reference data is derived from the population, and patients in this context are considered members of a population group rather than individuals. However, such reference data has limitations when used as the reference for an individual. A patient's test results preferably should be compared with their own, individualized reference intervals (RI), i.e. a personalized RI (prRI).The prRI is based on the homeostatic model and can be calculated using an individual's previous test results obtained in a steady-state situation and estimates of analytical (CVA) and biological variation (BV). BV used to calculate the prRI can be obtained from the population (within-subject biological variation, CVI) or an individual's own data (within-person biological variation, CVP). Statistically, the prediction interval provides a useful tool to calculate the interval (i.e. prRI) for future observation based on previous measurements. With the development of information technology, the data of millions of patients is stored and processed in medical laboratories, allowing the implementation of personalized laboratory medicine. PrRI for each individual should be made available as part of the laboratory information system and should be continually updated as new test results become available.In this review, we summarize the limitations of population-based RI for the diagnosis and monitoring of disease, provide an outline of the prRI concept and different approaches to its determination, including statistical considerations for deriving prRI, and discuss aspects which must be further investigated prior to implementation of prRI in clinical practice.


Asunto(s)
Valores de Referencia , Humanos
18.
Clin Chem Lab Med ; 60(4): 629-635, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34894385

RESUMEN

For many measurands, physicians depend on population-based reference intervals (popRI), when assessing laboratory test results. The availability of personalized reference intervals (prRI) may provide a means to improve the interpretation of laboratory test results for an individual. prRI can be calculated using estimates of biological and analytical variation and previous test results obtained in a steady-state situation. In this study, we aim to outline statistical approaches and considerations required when establishing and implementing prRI in clinical practice. Data quality assessment, including analysis for outliers and trends, is required prior to using previous test results to estimate the homeostatic set point. To calculate the prRI limits, two different statistical models based on 'prediction intervals' can be applied. The first model utilizes estimates of 'within-person biological variation' which are based on an individual's own data. This model requires a minimum of five previous test results to generate the prRI. The second model is based on estimates of 'within-subject biological variation', which represents an average estimate for a population and can be found, for most measurands, in the EFLM Biological Variation Database. This model can be applied also when there are lower numbers of previous test results available. The prRI offers physicians the opportunity to improve interpretation of individuals' test results, though studies are required to demonstrate if using prRI leads to better clinical outcomes. We recommend that both popRIs and prRIs are included in laboratory reports to aid in evaluating laboratory test results in the follow-up of patients.


Asunto(s)
Laboratorios , Modelos Estadísticos , Humanos , Valores de Referencia
19.
Clin Chem Lab Med ; 60(4): 523-532, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33561908

RESUMEN

OBJECTIVES: Thyroid biomarkers are fundamental for the diagnosis of thyroid disorders and for the monitoring and treatment of patients with these diseases. The knowledge of biological variation (BV) is important to define analytical performance specifications (APS) and reference change values (RCV). The aim of this study was to deliver BV estimates for thyroid stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), thyroglobulin (TG), and calcitonin (CT). METHODS: Analyses were performed on serum samples obtained from the European Biological Variation Study population (91 healthy individuals from six European laboratories; 21-69 years) on the Roche Cobas e801 at the San Raffaele Hospital (Milan, Italy). All samples from each individual were evaluated in duplicate within a single run. The BV estimates with 95% CIs were obtained by CV-ANOVA, after analysis of variance homogeneity and outliers. RESULTS: The within-subject (CV I ) BV estimates were for TSH 17.7%, FT3 5.0%, FT4 4.8%, TG 10.3, and CT 13.0%, all significantly lower than those reported in the literature. No significant differences were observed for BV estimates between men and women. CONCLUSIONS: The availability of updated, in the case of CT not previously published, BV estimates for thyroid markers based on the large scale EuBIVAS study allows for refined APS and associated RCV applicable in the diagnosis and management of thyroid and related diseases.


Asunto(s)
Glándula Tiroides , Triyodotironina , Variación Biológica Poblacional , Biomarcadores , Femenino , Voluntarios Sanos , Humanos , Masculino , Valores de Referencia , Tirotropina , Tiroxina
20.
Clin Chem Lab Med ; 60(4): 483-493, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34773727

RESUMEN

OBJECTIVES: Testing for thyroid disease constitutes a high proportion of the workloads of clinical laboratories worldwide. The setting of analytical performance specifications (APS) for testing methods and aiding clinical interpretation of test results requires biological variation (BV) data. A critical review of published BV studies of thyroid disease related measurands has therefore been undertaken and meta-analysis applied to deliver robust BV estimates. METHODS: A systematic literature search was conducted for BV studies of thyroid related analytes. BV data from studies compliant with the Biological Variation Data Critical Appraisal Checklist (BIVAC) were subjected to meta-analysis. Global estimates of within subject variation (CVI) enabled determination of APS (imprecision and bias), indices of individuality, and indicative estimates of reference change values. RESULTS: The systematic review identified 17 relevant BV studies. Only one study (EuBIVAS) achieved a BIVAC grade of A. Methodological and statistical issues were the reason for B and C scores. The meta-analysis derived CVI generally delivered lower APS for imprecision than the mean CVA of the studies included in this systematic review. CONCLUSIONS: Systematic review and meta-analysis of studies of BV of thyroid disease biomarkers have enabled delivery of well characterized estimates of BV for some, but not all measurands. The newly derived APS for imprecision for both free thyroxine and triiodothyronine may be considered challenging. The high degree of individuality identified for thyroid related measurands reinforces the importance of RCVs. Generation of BV data applicable to multiple scenarios may require definition using "big data" instead of the demanding experimental approach.


Asunto(s)
Lista de Verificación , Glándula Tiroides , Biomarcadores , Pruebas Hematológicas , Humanos , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA