Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Regul Homeost Agents ; 35(3): 865-880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34042415

RESUMEN

Human Coronavirus (CoV) infections, including SARS-COV, MERS-COV, and SARS-CoV-2, usually cause fatal lower and upper respiratory tract infections due to exacerbated expression of pro-inflammatory cytokines and chemokines. We aim to summarize different aspects, such as CoV immune evasion mechanisms and host innate immune response to these infections, and their role in pathogenesis. We have also elaborated the up-to-date findings on different vaccine development strategies and progress against CoVs in both humans and non-human models. Most importantly, we have described the Phageome-human immune interaction, its therapeutic usage as anti-viral, anti-inflammatory agent, and implications for multiple vaccine development systems. The data suggest that endogenous phages might play a vital role in eliminating the infection and regulating the body's immune system. Considering the innate-immune-induced pathogenesis against CoVs and the therapeutic aptitude of phageome, we propose that the prophylactic administration of phages and phage-based vaccines could be a useful strategy to control the emerging CoV infections.


Asunto(s)
COVID-19 , Viroma , Humanos , Inmunidad Innata , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA