Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103879, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429391

RESUMEN

All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Factor 1 de Elongación Peptídica , Animales , Humanos , Ratones , Mutación , Mutación Missense , Neuronas/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo
2.
Cell Mol Neurobiol ; 43(1): 237-249, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741697

RESUMEN

SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIß-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Animales , Ratones , Neuronas/metabolismo , Daño del ADN , Línea Celular , Receptores de Superficie Celular/genética , Proteínas del Tejido Nervioso/metabolismo
3.
Hum Mol Genet ; 29(10): 1592-1606, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32160274

RESUMEN

Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.


Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factor 1 de Elongación Peptídica/genética , Animales , Modelos Animales de Enfermedad , Mutación con Ganancia de Función/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Homocigoto , Humanos , Discapacidad Intelectual/patología , Ratones , Mutación Missense/genética , Trastornos del Neurodesarrollo/patología
4.
Hum Mutat ; 40(2): 131-141, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30370994

RESUMEN

The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.


Asunto(s)
Trastornos del Neurodesarrollo/genética , Factor 1 de Elongación Peptídica/genética , Trastorno Autístico/genética , Trastorno Autístico/patología , Epilepsia/genética , Epilepsia/patología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Trastornos del Neurodesarrollo/patología , Valina-ARNt Ligasa/genética
5.
PLoS Pathog ; 11(12): e1005289, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26624286

RESUMEN

Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3-4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and replication, and the RT-eEF1A interaction is a potential drug target.


Asunto(s)
Infecciones por VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Factor 1 de Elongación Peptídica/metabolismo , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunoprecipitación
6.
Proc Natl Acad Sci U S A ; 109(24): 9587-92, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22628567

RESUMEN

Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Factor 1 de Elongación Peptídica/metabolismo , Línea Celular , Cromatografía Liquida , Regulación hacia Abajo , Electroforesis en Gel de Poliacrilamida , Humanos , Inmunoprecipitación , Factor 1 de Elongación Peptídica/genética , ARN Interferente Pequeño , Espectrometría de Masas en Tándem , Transcripción Genética
7.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179821

RESUMEN

De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.


Asunto(s)
Trastornos del Neurodesarrollo , Convulsiones , Animales , Ratones , Modelos Animales de Enfermedad , Ratones Noqueados , Fibras Musculares Esqueléticas , Mutación/genética , Mutación Missense , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/genética
8.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442201

RESUMEN

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Asunto(s)
Aurora Quinasa A , Neoplasias de la Mama , Neoplasias Mamarias Animales , Fosfohidrolasa PTEN , Factor 1 de Elongación Peptídica , Animales , Femenino , Humanos , Ratones , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Glucógeno Sintasa Quinasa 3 beta , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo
9.
Eur J Hum Genet ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355961

RESUMEN

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

10.
Biochem Biophys Res Commun ; 411(1): 19-24, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21722626

RESUMEN

Translation elongation isoform eEF1A1 has a pivotal role in protein synthesis and is almost ubiquitously expressed. In mice and rats that transcription of the gene encoding eEF1A1 is downregulated to undetectable levels in muscle after weaning; eEF1A1 is then replaced by a separately encoded but closely related isoform eEF1A2, which has only previously been described in mammals. We now show that not only is eEF1A2 conserved in non-mammalian vertebrate species, but the down-regulation of eEF1A1 protein in muscle is preserved in Xenopus, with the protein being undetectable by adulthood. Interestingly, though, this down-regulation is controlled post-transcriptionally, and levels of full-length eEF1A1 mRNA remain similar to those of eEF1A2. The switching off of eEF1A1 in muscle is therefore sufficiently important to have evolved through the use of repression operating at different levels in different species. The 3'UTR of eEF1A1 is highly conserved and contains predicted binding sites for several miRNAs, suggesting a possible method for controlling of expression. We suggest that isoform switching may have evolved because of a need for certain cell types to modify the well-established non-canonical functions of eEF1A1.


Asunto(s)
Músculo Esquelético/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor 1 de Elongación Peptídica/metabolismo , Xenopus laevis/metabolismo , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Regulación hacia Abajo , Evolución Molecular , Femenino , Ratones , Datos de Secuencia Molecular , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Factor 1 de Elongación Peptídica/genética , Ratas , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
11.
Dis Model Mech ; 14(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33619078

RESUMEN

In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations.


Asunto(s)
Epilepsia , Animales , Encéfalo , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Humanos , Ratones
12.
PLoS One ; 16(8): e0256181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388204

RESUMEN

Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genes Ligados a X , Genoma Humano , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas del Tejido Nervioso/genética , Elementos Reguladores de la Transcripción , Tenascina/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Mapeo Cromosómico , Estudios de Cohortes , Modelos Animales de Enfermedad , Embrión no Mamífero , Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/patología , Ratones , Proteínas del Tejido Nervioso/deficiencia , Linaje , Fenotipo , Tenascina/deficiencia , Pez Cebra
13.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31950975

RESUMEN

Zebrafish are valuable model organisms for the study of human single-gene disorders: they are genetically manipulable, their development is well understood, and mutant lines with measurable, disease-appropriate phenotypic abnormalities can be used for high throughput drug screening approaches. However, gene duplication events in zebrafish can result in redundancy of gene function, masking loss-of-function phenotypes and thus confounding this approach to disease modelling. Furthermore, recent studies have yielded contrasting results depending on whether specific genes are targeted using genome editing to make mutant lines, or whether morpholinos are used (morphants). De novo missense mutations in the human gene EEF1A2, encoding a tissue-specific translation elongation factor, cause severe neurodevelopmental disorders; there is a real need for a model system to study these disorders and we wanted to explore the possibility of a zebrafish model. We identified four eef1a genes and examined their developmental and tissue-specific expression patterns: eef1a1l1 is first to be expressed while eef1a2 is only detected later during development. We then determined the effects of introducing null mutations into translation elongation factor 1A2 (eEF1A2) in zebrafish using CRISPR/Cas9 gene editing, in order to compare the results with previously described morphants, and with severe neurodegenerative lethal phenotype of eEF1A2-null mice. In contrast with both earlier analyses in zebrafish using morpholinos and with the mouse eEF1A2-null mice, disruption of the eef1a2 gene in zebrafish is compatible with normal lifespan. The resulting lines, however, may provide a valuable platform for studying the effects of expression of mutant human eEF1A2 mRNA.


Asunto(s)
Factor 1 de Elongación Peptídica/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Genotipo , Células HEK293 , Humanos , Mutación , Factor 1 de Elongación Peptídica/metabolismo , Fenotipo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Biochem Soc Trans ; 37(Pt 6): 1293-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19909265

RESUMEN

Translation elongation factor eEF1A (eukaryotic elongation factor 1A) exists as two individually encoded variants in mammals, which are 98% similar and 92% identical at the amino acid level. One variant, eEF1A1, is almost ubiquitously expressed, the other variant, eEF1A2, shows a very restricted pattern of expression. A spontaneous mutation was described in 1972, which gives rise to the wasted phenotype: homozygous wst/wst mice develop normally until shortly after weaning, but then lose muscle bulk, acquire tremors and gait abnormalities and die by 4 weeks. This mutation has been shown to be a deletion of 15 kb that removes the promoter and first exon of the gene encoding eEF1A2. The reciprocal pattern of expression of eEF1A1 and eEF1A2 in muscle fits well with the timing of onset of the phenotype of wasted mice: eEF1A1 declines after birth until it is undetectable by 3 weeks, whereas eEF1A2 expression increases over this time. No other gene is present in the wasted deletion, and transgenic studies have shown that the phenotype is due to loss of eEF1A2. We have shown that eEF1A2, but not eEF1A1, is also expressed at high levels in motor neurons in the spinal cord. Wasted mice develop many pathological features of motor neuron degeneration and may represent a good model for early onset of motor neuron disease. Molecular modelling of the eEF1A1 and eEF1A2 protein structures highlights differences between the two variants that may be critical for functional differences. Interactions between eEF1A2 and ZPR1 (zinc-finger protein 1), which interacts with the SMN (survival motor neuron) protein, may be important in motor neuron biology.


Asunto(s)
Degeneración Nerviosa , Neuronas , Factor 1 de Elongación Peptídica/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Mutantes , Modelos Moleculares , Mutación , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/patología , Neuronas/fisiología , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Médula Espinal/patología , Médula Espinal/fisiología
15.
Trends Biochem Sci ; 29(1): 25-31, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14729329

RESUMEN

It has been known for many years that aberrant levels of the factors involved in translation of mRNA can contribute to disease, most notably cancer. However, despite the wealth of information gathered about initiation and elongation factors from biochemical studies in mammalian cells, and from mutation analysis in lower organisms, little was known until recently about the effects that mutations in these factors could have on cellular function in higher organisms. In the past few years, this balance has started to be redressed, and we are at a fascinating stage in the molecular pathology of translation factors. It has been discovered recently that mutations in subunits of eukaryotic initiation factor 2B (eIF2B) underlie the neurodegenerative disease termed 'vanishing white matter'.


Asunto(s)
Factores Eucarióticos de Iniciación/genética , Enfermedades Genéticas Congénitas/genética , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Mutación , Biosíntesis de Proteínas
16.
Virology ; 530: 65-74, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30782564

RESUMEN

The eukaryotic translation elongation factor 1A (eEF1A) has two cell-type specific paralogs, eEF1A1 and eEF1A2. Both paralogs undertake a canonical function in delivering aminoacyl-tRNA to the ribosome for translation, but differences in other functions are emerging. eEF1A1 has been reported to be important for the replication of many viruses, but no study has specifically linked the eEF1A2 paralog. We have previously demonstrated that eEF1A1 directly interacts with HIV-1 RT and supports efficient reverse transcription. Here, we showed that RT interacted more strongly with eEF1A1 than with eEF1A2 in immunoprecipitation assay. Biolayer interferometry using eEF1A paralogs showed different association and dissociation rates with RT. Over expressed eEF1A1, but not eEF1A2, was able to restore HIV-1 reverse transcription efficiency in HEK293T cells with endogenous eEF1A knocked-down and HIV-1 reverse transcription efficiency correlated with the level of eEF1A1 mRNA, but not to eEF1A2 mRNA in both HEK293T and primary human skeletal muscle cells.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , VIH-1/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Factor 1 de Elongación Peptídica/metabolismo , Transcripción Reversa , Células HEK293 , Humanos , Inmunoprecipitación , Células Musculares , Unión Proteica
18.
BMC Struct Biol ; 8: 4, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18221514

RESUMEN

BACKGROUND: Eukaryotic translation elongation factor eEF1A directs the correct aminoacyl-tRNA to ribosomal A-site. In addition, eEF1A is involved in carcinogenesis and apoptosis and can interact with large number of non-translational ligands. There are two isoforms of eEF1A, which are 98% similar. Despite the strong similarity, the isoforms differ in some properties. Importantly, the appearance of eEF1A2 in tissues in which the variant is not normally expressed can be coupled to cancer development.We reasoned that the background for the functional difference of eEF1A1 and eEF1A2 might lie in changes of dynamics of the isoforms. RESULTS: It has been determined by multiple MD simulation that eEF1A1 shows increased reciprocal flexibility of structural domains I and II and less average distance between the domains, while increased non-correlated diffusive atom motions within protein domains characterize eEF1A2. The divergence in the dynamic properties of eEF1A1 and eEF1A2 is caused by interactions of amino acid residues that differ between the two variants with neighboring residues and water environment. The main correlated motion of both protein isoforms is the change in proximity of domains I and II which can lead to disappearance of the gap between the domains and transition of the protein into a "closed" conformation. Such a transition is reversible and the protein can adopt an "open" conformation again. This finding is in line with our earlier experimental observation that the transition between "open" and "closed" conformations of eEF1A could be essential for binding of tRNA and/or other biological ligands. The putative calmodulin-binding region Asn311-Gly327 is less flexible in eEF1A1 implying its increased affinity for calmodulin. The ability of eEF1A1 rather than eEF1A2 to interact with Ca2+/calmodulin is shown experimentally in an ELISA-based test. CONCLUSION: We have found that reversible transitions between "open" and "close" conformations of eEF1A provide a molecular background for the earlier observation that the eEF1A molecule is able to change the shape upon interaction with tRNA. The ability of eEF1A1 rather than eEF1A2 to interact with calmodulin is predicted by MD analysis and showed experimentally. The differential ability of the eEF1A isoforms to interact with signaling molecules discovered in this study could be associated with cancer-related properties of eEF1A2.


Asunto(s)
Calmodulina/metabolismo , Factor 1 de Elongación Peptídica/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/química , Calmodulina/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/metabolismo , Conformación Proteica , Isoformas de Proteínas/química , Estructura Terciaria de Proteína , Alineación de Secuencia
19.
Sci Rep ; 7: 46019, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378778

RESUMEN

De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/- mice, showing that the mutant protein is essentially non-functional.


Asunto(s)
Alelos , Muerte Súbita , Mutación/genética , Factor 1 de Elongación Peptídica/genética , Convulsiones/genética , Animales , Secuencia de Bases , Peso Corporal , Sistemas CRISPR-Cas/genética , Edición Génica , Regulación de la Expresión Génica , Genoma , Genotipo , Ratones , Degeneración Nerviosa/patología , Factor 1 de Elongación Peptídica/metabolismo , Médula Espinal/patología
20.
Wellcome Open Res ; 1: 13, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976757

RESUMEN

The recent identification of multiple new genetic causes of neurological disorders highlights the need for model systems that give experimental access to the underlying biology. In particular, the ability to couple disease-causing mutations with human neuronal differentiation systems would be beneficial. Gene targeting is a well-known approach for dissecting gene function, but low rates of homologous recombination in somatic cells (including neuronal cells) have traditionally impeded the development of robust cellular models of neurological disorders. Recently, however, CRISPR/Cas9 gene editing technologies have expanded the number of systems within which gene targeting is possible. Here we adopt as a model system LUHMES cells, a commercially available diploid human female mesencephalic cell line that differentiates into homogeneous mature neurons in 1-2 weeks. We describe optimised methods for transfection and selection of neuronal progenitor cells carrying targeted genomic alterations using CRISPR/Cas9 technology. By targeting the endogenous X-linked MECP2 locus, we introduced four independent missense mutations that cause the autism spectrum disorder Rett syndrome and observed the desired genetic structure in 3-26% of selected clones, including gene targeting of the inactive X chromosome. Similar efficiencies were achieved by introducing neurodevelopmental disorder-causing mutations at the autosomal EEF1A2 locus on chromosome 20. Our results indicate that efficiency of genetic "knock-in" is determined by the location of the mutation within the donor DNA molecule. Furthermore, we successfully introduced an mCherry tag at the MECP2 locus to yield a fusion protein, demonstrating that larger insertions are also straightforward in this system. We suggest that our optimised methods for altering the genome of LUHMES cells make them an attractive model for the study of neurogenetic disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA