Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847486

RESUMEN

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Asunto(s)
Ciclo Celular , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Terapia Molecular Dirigida/métodos
2.
FASEB J ; 38(13): e23813, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38976162

RESUMEN

Beta-blockers are commonly used medications that antagonize ß-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.


Asunto(s)
Antagonistas Adrenérgicos beta , Resistencia a Antineoplásicos , Neoplasias , Humanos , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Progresión de la Enfermedad , Receptores Adrenérgicos beta/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
3.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38354025

RESUMEN

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de la Dipeptidil-Peptidasa IV , Neoplasias Hepáticas , Animales , Ratas , Linagliptina/farmacología , Proteínas Quinasas Activadas por AMP , Dietilnitrosamina/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Hipoglucemiantes , Inhibidores de Proteasas , Antivirales , Antiinflamatorios
4.
Toxicol Appl Pharmacol ; 486: 116943, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677600

RESUMEN

Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body ß-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases ß-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous ß-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of ß-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous ß-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma ß-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma ß-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.


Asunto(s)
Ácido 3-Hidroxibutírico , Colitis Ulcerosa , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Ácido 3-Hidroxibutírico/farmacología , Ratas , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Sulfato de Dextran/toxicidad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , FN-kappa B/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Cetonas/farmacología
5.
Curr Atheroscler Rep ; 26(8): 395-410, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38869707

RESUMEN

PURPOSE OF REVIEW: To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS: Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.


Asunto(s)
Aterosclerosis , Biomarcadores , MicroARNs , Humanos , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico , Aterosclerosis/terapia , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo , Pronóstico , Animales
6.
J Pharm Health Care Sci ; 10(1): 17, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594773

RESUMEN

BACKGROUND: Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity. METHODS: Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NOx) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators. RESULTS: Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS. CONCLUSIONS: In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.

7.
Front Cell Neurosci ; 18: 1336145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699177

RESUMEN

The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.

8.
Sci Rep ; 14(1): 7434, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548778

RESUMEN

Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.


Asunto(s)
Hesperidina , Enfermedades Renales , Insuficiencia Renal , Ratas , Animales , Masculino , Ciclosporina/farmacología , FN-kappa B/metabolismo , Catalasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Hesperidina/farmacología , Hesperidina/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Wistar , Fosfato de Sitagliptina/efectos adversos , Creatinina , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Insuficiencia Renal/patología , Glutatión/metabolismo , Urea/metabolismo , Superóxido Dismutasa/metabolismo , Glucosa/metabolismo
9.
Int Immunopharmacol ; 127: 111369, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38101219

RESUMEN

Liraglutide (LIRA), a drug used to treat type 2 diabetes mellitus that belongs to the glucagon-like peptide-1 class, has recently drawn attention for its potential cardioprotective properties because of its anti-oxidative and anti-inflammatory properties. This current investigation was designed to assess the impact of LIRA on myocardial injury induced by isoproterenol (ISO). The experiment included 24 male Wistar rats in total, and they were divided into four groups: Control, LIRA (200 µg/kg/12 hrs., S.C.), ISO (85 mg/kg, S.C.), and ISO + LIRA. To assess the results, various biochemical and histopathological analyses were carried out. The findings showed elevated serum enzyme levels, a sign of cardiac injury. ISO-treated rats showed an upregulation of oxidative stress and inflammatory biomarkers like MDA, MPO, nitrites, NADPH oxidase, TNF-α, IL-1ß, IL-6, 8-Hydroxyguanosine (8-OHdG), and TGF-ß, as well as altered gene expressions like TLR-1 and miRNA-34a-5p. According to western blotting analysis, protein levels of AKT, PI3K, and mTOR were obviously enhanced. Additionally, ISO-treated samples showed altered tissue morphology, elevated caspase 3, and decreased Bcl2 concentrations. The levels of these dysregulated parameters were significantly normalized by LIRA therapy, demonstrating its cardioprotective function against ISO-induced myocardial injury in rats. This protective mechanism was linked to anti-inflammatory properties, redox balance restoration, and modulation of the miRNA-34a-5p/TGF-ß pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteína HMGB1 , MicroARNs , Ratas , Masculino , Animales , Isoproterenol , Proteínas Proto-Oncogénicas c-akt/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Liraglutida/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína HMGB1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratas Wistar , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , MicroARNs/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Miocardio/patología
10.
Life Sci ; 347: 122642, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641047

RESUMEN

Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.


Asunto(s)
Reposicionamiento de Medicamentos , Hepatopatías , Reposicionamiento de Medicamentos/métodos , Humanos , Hepatopatías/tratamiento farmacológico , Biología Computacional/métodos , Descubrimiento de Drogas/métodos
11.
Int J Biol Macromol ; 264(Pt 1): 130426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428766

RESUMEN

Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.


Asunto(s)
Neoplasias de la Vesícula Biliar , ARN Largo no Codificante , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/patología , ARN Largo no Codificante/genética , Biomarcadores de Tumor/genética , Transducción de Señal/genética , ARN no Traducido
12.
Pathol Res Pract ; 253: 155054, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142525

RESUMEN

Asthma is a chronic non-communicable respiratory disease that is characterized by airway inflammation and hyperreactivity. Defective functions of airway smooth muscle and dysregulated signaling pathways play a crucial role in the pathogenesis of asthma. Anti-inflammatories and targeted therapy are mainly used for the treatment of asthma. Recent studies have investigated the role of non-coding RNAs, especially microRNAs (miRNAs; miR) in regulating gene expression and their involvement in the dysfunctional signaling pathways. In immune-mediated diseases, including asthma, miRNAs govern the actions of cells that form the airway structure and those responsible for the defense mechanisms in the bronchi and lungs. miRNAs control cell survival, proliferation, and growth, as well as the cells' capacity to produce and release chemokines and immune mediators. Moreover, miRNAs have an important role in the response to therapeutic interventions. Collectively, this review highlights the regulatory roles of miRNAs in modulating the different signaling pathways and therapeutic responses in asthma. Patients who suffer from asthma, particularly those with severe disease characteristics, may benefit from the prospective treatment options that include targeting miRNAs in order to reduce airway inflammation, hyperreactivity, and mucus production.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/metabolismo , Asma/terapia , Asma/tratamiento farmacológico , Pulmón/patología , Bronquios/patología , Inflamación/genética
13.
Eur J Pharm Sci ; 200: 106849, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992452

RESUMEN

Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39028332

RESUMEN

Gallbladder cancer (GBC) is an aggressive and lethal malignancy with a poor prognosis. Long noncoding RNAs (lncRNAs) and natural products have emerged as key orchestrators of cancer pathogenesis through widespread dysregulation across GBC transcriptomes. Functional studies have revealed that lncRNAs interact with oncoproteins and tumor suppressors to control proliferation, invasion, metastasis, angiogenesis, stemness, and drug resistance. Curcumin, baicalein, oleanolic acid, shikonin, oxymatrine, arctigenin, liensinine, fangchinoline, and dioscin are a few examples of natural compounds that have demonstrated promising anticancer activities against GBC through the regulation of important signaling pathways. The lncRNAs, i.e., SNHG6, Linc00261, GALM, OIP5-AS1, FOXD2-AS1, MINCR, DGCR5, MEG3, GATA6-AS, TUG1, and DILC, are key players in regulating the aforementioned processes. For example, the lncRNAs FOXD2-AS1, DILC, and HOTAIR activate oncogenes such as DNMT1, Wnt/ß-catenin, BMI1, and c-Myc, whereas MEG3 and GATA6-AS suppress the tumor proteins NF-κB, EZH2, and miR-421. Clinically, specific lncRNAs can serve as diagnostic or prognostic biomarkers based on overexpression correlating with advanced TNM stage, metastasis, chemoresistance, and poor survival. Therapeutically, targeting aberrant lncRNAs with siRNA or antisense oligos disrupts their oncogenic signaling and inhibits GBC progression. Overall, dysfunctional lncRNA regulatory circuits offer multiple avenues for precision medicine approaches to improve early GBC detection and overcome this deadly cancer. They have the potential to serve as novel biomarkers as they are detectable in bodily fluids and tissues. These findings enhance gallbladder treatments, mitigating resistance to chemo- and radiotherapy.

16.
Pathol Res Pract ; 253: 155087, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183820

RESUMEN

Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.


Asunto(s)
MicroARNs , Infarto del Miocardio , Humanos , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/patología , Necrosis/patología , Apoptosis/genética
17.
Pathol Res Pract ; 253: 155093, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38184962

RESUMEN

Stroke is a widespread neurological disorder associated with physical disabilities, mortality, and economic burden. In recent decades, substantial progress has been achieved in reducing the impact of this public health problem. However, further understanding of the pathophysiology of stroke and the underlying genetic pathways is required. The pathological mechanisms of stroke comprise multifaceted molecular cascades regulated by various microRNAs (miRNAs). An increasing number of studies have highlighted the role of miRNAs, which have received much attention during the last decades as an important class of post-transcriptional regulators. It was shown that miRNAs exert their role in the etiology of stroke via mediating excitotoxicity and neuroinflammation. Additionally, miRNAs could be helpful as non-invasive or minimally invasive biomarkers and therapeutic agents. Thus, the current review focused on the interplay of these miRNAs in stroke pathology to upgrade the existing therapeutic strategies.


Asunto(s)
MicroARNs , Accidente Cerebrovascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Biomarcadores/metabolismo
18.
Front Pharmacol ; 15: 1377980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808257

RESUMEN

Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-ß, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.

19.
Int J Biol Macromol ; 268(Pt 2): 131814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677679

RESUMEN

Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFß signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.


Asunto(s)
Biomarcadores , Epigénesis Genética , MicroARNs , Espondilitis Anquilosante , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/diagnóstico , Espondilitis Anquilosante/inmunología , Humanos , MicroARNs/genética , Regulación de la Expresión Génica , Animales , Transducción de Señal
20.
Pathol Res Pract ; 253: 155023, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081104

RESUMEN

Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Humanos , MicroARNs/metabolismo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Dopamina/uso terapéutico , Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA