RESUMEN
Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2 O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2 O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2 O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF though contains more pyrene units than other COFs which induces a high H2 O2 decomposition due to a dense concentration of pyrene in close proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2 O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2 O2 generation.
RESUMEN
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3 N4 ) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3 N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.
RESUMEN
Herein, a highly N-rich covalent triazine framework (CTF) is applied as support for a RuIII complex. The bipyridine sites within the CTF provide excellent anchoring points for the [Ru(acac)2(CH3CN)2]PF6 complex. The obtained robust RuIII@bipy-CTF material was applied for the selective tandem aerobic oxidation-Knoevenagel condensation reaction. The presented system shows a high catalytic performance (>80% conversion of alcohols to α, ß-unsaturated nitriles) without the use of expensive noble metals. The bipy-CTF not only acts as the catalyst support but also provides the active sites for both aerobic oxidation and Knoevenagel condensation reactions. This work highlights a new perspective for the development of highly efficient and robust heterogeneous catalysts applying CTFs for cascade catalysis.
Asunto(s)
Complejos de Coordinación/química , Rutenio/química , Triazinas/química , Aerobiosis , Catálisis , Cinética , Oxidación-ReducciónRESUMEN
The challenge of measuring fast moving or small scale samples is based on the absence of contact between sample and sensor. Grafting lanthanides onto hybrid materials arises as one of the most promising accurate techniques to obtain noninvasive thermometers. In this work, a novel bipyridine based porous organic polymer (bpyDAT POP) was investigated as temperature sensor after grafting with Eu(acac)3 and Tb(acac)3 complexes. The bpyDAT POP successfully showed temperature-dependent behavior in the 10-310â K range, proving the potential of amorphous, porous organic frameworks. We observed unique temperature dependent behavior. More intriguingly, instead of the standard observed change in emission as a result of a change in temperature for both Eu3+ and Tb3+ , the emission spectrum of Tb3+ remained constant. This work provides framework- and energy-based explanations for the observed phenomenon. The conjugation in the bpyDAT POP framework is interrupted, creating energetically isolated Tb3+ environments. Energy transfer from Tb3+ to Eu3+ is therefore absent, nor energy back transfer from Tb3+ to bpyDAT POP ligand (i.e. no thermal quenching) is detected.
RESUMEN
Mixed-metal MOFs are metal-organic frameworks that contain at least 2 different metal ions as nodes of their frameworks. They are prepared relatively easily by either a one-pot synthesis with a synthesis mixture containing the different metals, or by a post-synthetic ion-exchange method by soaking a monometallic MOF in a concentrated solution of a different (but compatible) metal-ion. More difficult is the accurate characterization of these materials. Is the formed product a mixture of monometallic MOFs or indeed a MOF with different metallic nodes? Are the metals randomly distributed or do they form domains? What is the oxidation state of the metals? How do the metals mutually influence each other, and impact the material's performance? Advanced characterization techniques are required e.g. X-ray absorption spectroscopy, magnetic resonance and electron microscopy. Computational tools at multiple scales are also often applied. In almost every case, a judicious choice of several techniques is required to unambiguously characterize the mixed-metal MOF. Although still in their infancy, several applications are emerging for mixed-metal MOFs, that improve on conventional monometallic MOFs. In the field of gas sorption and storage, especially the stability and affinity towards the target gases can be largely improved by introducing a second metal ion. In the case of flexible MOFs, the breathing behavior, and in particular the pressure at which the MOF opens, can be tailored. In heterogeneous catalysis, new cascade and tandem reactions become possible, with particular focus on reactions where the two metals in close proximity truly form a mixed-metal transition state. The bimetallic MOF should have a clear benefit over a mixture of the respective monometallic MOFs, and bimetallic enzymes can be a huge source of inspiration in this field. Another very promising application lies in the fields of luminescence and sensing. By tuning the lanthanide metals in mixed-metal lanthanide MOFs and by using the organic linkers as antennae, novel smart materials can be developed, acting as sensors and as thermochromic thermometers. Of course there are also still open challenges, as also mixed-metal MOFs do not escape the typical drawbacks of MOFs, such as low stability in moisture and possible metal leaching in liquids. The ease of synthesis of mixed-metal MOFs is a large bonus. In this critical review, we discuss in detail the synthesis, characterization, computational work and applications of mixed-metal MOFs.
RESUMEN
Iodoarenes are important precursors for fine chemicals and pharmaceuticals. The direct iodination of arenes using molecular iodine (I2) has emerged as an attractive green synthesis method. Most of the direct iodination protocols are still homogeneous systems that require harsh conditions and use or produce toxic products. We report a new heterogeneous catalytic route for the direct aerobic iodination of arenes under mild conditions using a PMoV2 polyoxometalate (POM) embedded in the metal-organic framework (MOF) MIL-101 (PMoV2@MIL-101). The catalyst shows full yield for the conversion of mesitylene to 2-iodomesitylene at a rate that is similar to the homogeneous POM system. Moreover, the catalyst is applicable for a wide range of substrates in an oxygen atmosphere without using any co-catalysts or sacrificial agents. To the best of our knowledge, this is the first report on designing a sustainable and green MOF-based heterogeneous catalytic system for the direct iodination reaction using molecular oxygen and iodine.
RESUMEN
Chromoselective photocatalysis offers an intriguing opportunity to enable a specific reaction pathway out of a potentially possible multiplicity for a given substrate by using a sensitizer that converts the energy of incident photon into the redox potential of the corresponding magnitude. Several sensitizers possessing different discrete redox potentials (high/low) upon excitation with photons of specific wavelength (short/long) have been reported. Herein, we report design of molecular structures of two-dimensional amorphous covalent triazine-based frameworks (CTFs) possessing intraband states close to the valence band with strong red edge effect (REE). REE enables generation of a continuum of excited sites characterized by their own redox potentials, with the magnitude proportional to the wavelength of incident photons. Separation of charge carriers in such materials depends strongly on the wavelength of incident light and is the primary parameter that defines efficacy of the materials in photocatalytic bromination of electron rich aromatic compounds. In dual Ni-photocatalysis, excitation of electrons from the intraband states to the conduction band of the CTF with 625 nm photons enables selective formation of CâN cross-coupling products from arylhalides and pyrrolidine, while an undesirable dehalogenation process is completely suppressed.
RESUMEN
Chemoselective reduction of nitroarenes to arylamines is a core technology for the synthesis of numerous chemicals. The technology, however, relies on applying precious noble metal catalysts. We present our findings on the development of robust nanoporous covalent triazine frameworks (CTFs) as metal-free catalysts for the green chemoselective reduction of nitroarenes. The turnover frequency is found to be 43.03 h-1, exceeding activities of the heteroatom-doped carbon nanomaterials by a factor of 30. The X-ray photoelectron spectroscopy and control experiments provide further insights into the nature of active species for prompt catalysis. This report confirms the importance of quaternary 'N' and 'F' atom functionalities to create active hydrogen species via charge delocalization as a critical step in improving the catalytic activity.
RESUMEN
One-pot reactions offer economic and environmental advantages. Therefore, the design and synthesis of multifunctional catalysts capable of catalyzing multistep organic transformations are highly important. Herein, an effective bifunctional heterogeneous catalyst is presented. For the first time, the encapsulation of H5PMo10V2O40 (PMoV2) polyoxometalate into the cages of an alkylamine-modified MIL-101 using an optimized double-solvent method is reported. The obtained PMoV2@DETA-MIL-101 material displays a great catalytic performance (99% conversion of alcohols) for the selective aerobic oxidation-Knoevenagel one-pot reaction. To the best of our knowledge, this is one of the first reports on the usage of noble-metal-free catalysts for the aerobic oxidation-Knoevenagel one-pot reaction without the addition of additives. The catalyst is very stable and can be used for at least five cycles with no leaching of the active sites.
RESUMEN
Given the complex calcified nature of the fibrous bone tissue, a combinatorial approach merging specific topographical/biochemical cues was adopted to design bone tissue-engineered scaffolds. Coral having a Ca-enriched structure was added to electrospun chitosan (CS)/polyethylene oxide (PEO) nanofibers that were subjected to plasma surface modifications using a medium pressure Ar, air or N2 dielectric barrier discharge. Plasma incorporated oxygen- and nitrogen-containing functionalities onto the nanofibers surface thus enhancing their wettability. Plasma treatment enhanced the performance of osteoblasts and the interplay between plasma treatment and coral was shown to boost initial cell adhesion. The fibers capacity to trigger calcium phosphate growth was predicted via immersion in simulated body fluid. Globular carbonate apatite nanocrystals were deposited on plasma-treated CS/PEO NFs while thicker layers of flake-like nanocrystals were covering plasma-treated Coral/CS/PEO fibers without blocking the interfibrous pores. Overall, the exclusive multifaceted plasma-treated Coral/CS/PEO nanofibers are believed to revolutionize the bone tissue engineering field.
Asunto(s)
Antozoos/química , Huesos , Quitosano/química , Nanofibras/química , Plasma/química , Polietilenglicoles/química , Ingeniería de Tejidos/métodos , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ratones , Nanopartículas/química , Osteoblastos/fisiología , Propiedades de Superficie , Andamios del Tejido/química , HumectabilidadRESUMEN
Oxygen activation is a critical step in ubiquitous heterogeneous oxidative processes, most prominently in catalysis, electrolysis, and pharmaceutical applications. We present here our findings on metal-free O2 activation on covalent triazine frameworks (CTFs) as an important class of N-rich materials. The O2 activation process was studied for the formation of aldehydes, ketones and imines. A detailed mechanistic study of O2 activation and the role of nitrogen heteroatoms were comprehensively investigated. The electron paramagnetic resonance (EPR) and control experiments provide strong evidence for the reaction mechanism proving the applicability of the CTFs to activate oxygen into superoxide species. This report highlights the importance of a self-templating procedure to introduce N functionalities for the development of metal-free catalytic materials. The presented findings reveal an important step toward the use of CTFs as inexpensive and high-performance alternatives to metal-based materials not only for catalysis but also for biorelated applications dealing with O2 activation.