RESUMEN
The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes. Intriguingly, Phf8 has a strong positive impact on Olig2 expression by acting on several regulatory regions of the gene and changing their histone modification profile. Taking the influence of Olig2 levels on oligodendroglial proliferation and differentiation into account, Olig2 likely acts as an important downstream effector of Phf8 in these cells. In line with such an effector function, ectopic Olig2 expression in Phf8-deficient cells rescues the proliferation defect. Additionally, generation of human oligodendrocytes from induced pluripotent stem cells did not require PHF8 in a system that relies on forced expression of Olig2 during oligodendroglial induction. We conclude that Phf8 may impact nervous system development at least in part through its action in oligodendroglial cells.
Asunto(s)
Proliferación Celular , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía , Factores de Transcripción , Oligodendroglía/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Proliferación Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Ratas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Madre Pluripotentes Inducidas/metabolismoRESUMEN
Oligodendrocyte differentiation and myelination in the central nervous system are controlled and coordinated by a complex gene regulatory network that contains several transcription factors, including Zfp488 and Nkx2.2. Despite the proven role in oligodendrocyte differentiation little is known about the exact mode of Zfp488 and Nkx2.2 action, including their target genes. Here, we used overexpression of Zfp488 and Nkx2.2 in differentiating CG4 cells to identify aspects of the oligodendroglial expression profile that depend on these transcription factors. Although both transcription factors are primarily described as repressors, the detected changes argue for an additional function as activators. Among the genes activated by both Zfp488 and Nkx2.2 was the G protein-coupled receptor Gpr37 that is important during myelination. In agreement with a positive effect on Gpr37 expression, downregulation of the G protein-coupled receptor was observed in Zfp488- and in Nkx2.2-deficient oligodendrocytes in the mouse. We also identified several potential regulatory regions of the Gpr37 gene. Although Zfp488 and Nkx2.2 both bind to one of the regulatory regions downstream of the Gpr37 gene in vivo, none of the regulatory regions was activated by either transcription factor alone. Increased activation by Zfp488 or Nkx2.2 was only observed in the presence of Sox10, a transcription factor continuously present in oligodendroglial cells. Our results argue that both Zfp488 and Nkx2.2 also act as transcriptional activators during oligodendrocyte differentiation and cooperate with Sox10 to allow the expression of Gpr37 as a modulator of the myelination process.
Asunto(s)
Diferenciación Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Oligodendroglía , Receptores Acoplados a Proteínas G , Factores de Transcripción SOXE , Factores de Transcripción , Animales , Femenino , Masculino , Ratones , Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
In oligodendrocytes of the vertebrate central nervous system a complex network of transcriptional regulators is required to ensure correct and timely myelination of neuronal axons. Here we identify Zfp276, the only mammalian ZAD-domain containing zinc finger protein, as a transcriptional regulator of oligodendrocyte differentiation and central myelination downstream of Sox10. In the central nervous system, Zfp276 is exclusively expressed in mature oligodendrocytes. Oligodendroglial deletion of Zfp276 led to strongly reduced expression of myelin genes in the early postnatal mouse spinal cord. Retroviral overexpression of Zfp276 in cultured oligodendrocyte precursor cells induced precocious expression of maturation markers and myelin genes, further supporting its role in oligodendroglial differentiation. On the molecular level, Zfp276 directly binds to and represses Sox10-dependent gene regulatory regions of immaturity factors and functionally interacts with the transcriptional repressor Zeb2 to enable fast transition of oligodendrocytes to the myelinating stage.
Asunto(s)
Oligodendroglía , Médula Espinal/citología , Factores de Transcripción , Animales , Diferenciación Celular , Ratones , Vaina de Mielina/fisiología , Neurogénesis , Oligodendroglía/citología , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Células Madre , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.
Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN , Factores de Transcripción SOXE , Células de Schwann , Animales , Humanos , Ratones , Ratas , Diferenciación Celular/genética , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Células de Schwann/citología , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.