Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 92(9): 1840-1855, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37415521

RESUMEN

Predation risk and prey responses exhibit fluctuations in space and time. Seasonal ecological disturbances can alter landscape structure and permeability to influence predator activity and efficacy, creating predictable patterns of risk for prey (seasonal risk landscapes). This may create corresponding seasonal shifts in antipredator behaviour, mediated by species ecology and trade-offs between risk and resources. Yet, how human recreation interacts with seasonal risk landscapes and antipredator behaviour remains understudied. In South Florida, we investigated the impact of a seasonal ecological disturbance, specifically flooding, which is inversely related to human activity, on interactions between Florida panthers (Puma concolor coryi) and white-tailed deer (Odocoileus virginianus). We hypothesized that human activity and ecological disturbances would interact with panther-deer ecology, resulting in the emergence of two distinct seasonal landscapes of predation risk and the corresponding antipredator responses. We conducted camera trap surveys across southwestern Florida to collect detection data on humans, panthers and deer. We analysed the influence of human site use and flooding on deer and panther detection probability, co-occurrence and diel activity during the flooded and dry seasons. Flooding led to decreased panther detections and increased deer detections, resulting in reduced deer-panther co-occurrence during the flooded season. Panthers exhibited increased nocturnality and reduced diel activity overlap with deer in areas with higher human activity. Supporting our hypothesis, panthers' avoidance of human recreation and flooding created distinct risk schedules for deer, driving their antipredator behaviour. Deer utilized flooded areas to spatially offset predation risk during the flooded season while increasing diurnal activity in response to human recreation during the dry season. We highlight the importance of understanding how competing risks and ecological disturbances influence predator and prey behaviour, leading to the generation of seasonal risk landscapes and antipredator responses. We emphasize the role of cyclical ecological disturbances in shaping dynamic predator-prey interactions. Furthermore, we highlight how human recreation may function as a 'temporal human shield,' altering seasonal risk landscapes and antipredator responses to reduce encounter rates between predators and prey.


Asunto(s)
Ciervos , Puma , Humanos , Animales , Ciervos/fisiología , Estaciones del Año , Conducta Predatoria/fisiología , Puma/fisiología , Lluvia , Recreación , Ecosistema
2.
Proc Biol Sci ; 286(1916): 20192230, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31771480

RESUMEN

Extreme climatic events (ECEs) are increasing in frequency and intensity and this necessitates understanding their influence on organisms. Animal behaviour may mitigate the effects of ECEs, but field studies are rare because ECEs are infrequent and unpredictable. Hurricane Irma made landfall in southwestern Florida where we were monitoring white-tailed deer (Odocoileus virginianus seminolus) with GPS collars. We report on an opportunistic case study of behavioural responses exhibited by a large mammal during an ECE, mitigation strategies for reducing the severity of the ECE effects, and the demographic effect of the ECE based on known-fate of individual animals. Deer altered resource selection by selecting higher elevation pine and hardwood forests and avoiding marshes. Most deer left their home ranges during Hurricane Irma, and the probability of leaving was inversely related to home range area. Movement rates increased the day of the storm, and no mortality was attributed to Hurricane Irma. We suggest deer mobility and refuge habitat allowed deer to behaviourally mitigate the negative effects of the storm, and ultimately, aid in survival. Our work contributes to the small but growing body of literature linking behavioural responses exhibited during ECEs to survival, which cumulatively will provide insight for predictions of a species resilience to ECEs and improve our understanding of how behavioural traits offset the negative impacts of global climate change.


Asunto(s)
Conducta Animal , Tormentas Ciclónicas , Ciervos/fisiología , Fenómenos de Retorno al Lugar Habitual , Animales , Cambio Climático , Ecosistema , Florida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA