Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(12): e0002921, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33837019

RESUMEN

The Pseudomonas aeruginosa LasR-LasI (LasR-I) quorum sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations, indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found that the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and, second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Tobramicina/farmacología , Proteínas Bacterianas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Piocianina/metabolismo , Transactivadores/genética
2.
mBio ; 9(3)2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789364

RESUMEN

Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Percepción de Quorum , Animales , Bacterias/genética , Infecciones Bacterianas/microbiología , Humanos , Interacciones Microbianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA