Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2208098, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072802

RESUMEN

The production of bulk nanostructured silicide thermoelectric materials by a reversible hydrogen absorption-desorption process is demonstrated. Here, high-pressure reactive milling under 100 bar hydrogen is used to decompose the Ca2 Si phase into CaH2 and Si. Subsequent vacuum heat treatment results in hydrogen desorption and recombination of the constituents into the original phase. By changing the heat treatment temperature, recombination into Ca2 Si or Ca5 Si3 can be achieved. Most importantly, the advanced synthesis process enables drastic and simple microstructure refinement by more than two orders of magnitude, from a grain size of around 50 µm in the initial ingot to 100-200 nm after the hydrogen absorption-desorption process. Fine precipitates with sizes ranging from 10-50 nm are forming coherently inside the grains. Thus, the route is promising and can be used for reducing thermal conductivity due to phonon scattering from grain boundaries as well as through nanostructuring with second-phase precipitates. Moreover, the process is environmentally friendly since hydrogen is reversibly absorbed, desorbed, and can be fully recovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA