Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139439

RESUMEN

Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-ß were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-ß levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.


Asunto(s)
Adenosina , COVID-19 , Linfocitos T Reguladores , Humanos , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Antiinflamatorios , Antígenos CD/genética , Antígenos CD/metabolismo , Progresión de la Enfermedad , Interleucina-10 , Receptores Purinérgicos P1/genética , Factor de Crecimiento Transformador beta/genética , Linfocitos T Reguladores/metabolismo
2.
Viruses ; 15(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37376678

RESUMEN

Viruses can trigger glomerulonephritis (GN) development. Hepatitis viruses, especially Hepatitis C virus and Hepatitis B viruses, are examples of the viruses that trigger GN initiation or progression. However, the proof of a correlation between GN and Hepatitis E virus infection is not clear. Some studies confirmed the development of GN during acute or chronic HEV infections, mainly caused by genotype 3. While others reported that there is no relation between HEV exposure and GN development. A recent study showed that a reduced glomerular filtration rate was developed in 16% of acute HEV genotype 1 (HEV-1) infections that returned to normal during recovery. HEV-1 is endemic in Egypt with a high seroprevalence among villagers and pregnant women. There is no available data about a link between HEV and GN in Egypt. METHODS: GN patients (n = 43) and matched healthy subjects (n = 36) enrolled in Assiut University hospitals were included in this study. Blood samples were screened for hepatotropic pathogens. Tests for HEV markers such as HEV RNA and anti-HEV antibodies (IgM and IgG) were performed. Laboratory parameters were compared in HEV-seropositive and HEV-seronegative GN patients. RESULTS: Anti-HEV IgG was detected in 26 (60.5%) out of 43 GN patients. HEV seroprevalence was significantly higher in GN than in healthy controls, suggesting that HEV exposure is a risk factor for GN development. None of the GN patients nor the healthy subjects were positive for anti-HEV IgM or HEV RNA. There was no significant difference between seropositive and seronegative GN patients in terms of age, gender, albumin, kidney function profiles, or liver transaminases. However, anti-HEV IgG positive GN patients had higher bilirubin levels than anti-HEV IgG negative GN patients. HEV-seropositive GN patients had a significantly elevated AST level compared to HEV-seropositive healthy subjects. CONCLUSION: exposure to HEV infection could be complicated by the development of GN.


Asunto(s)
Glomerulonefritis , Virus de la Hepatitis E , Hepatitis E , Humanos , Femenino , Embarazo , Virus de la Hepatitis E/genética , Estudios Seroepidemiológicos , Hepatitis E/complicaciones , Hepatitis E/epidemiología , Anticuerpos Antihepatitis , Glomerulonefritis/epidemiología , ARN Viral , Inmunoglobulina M , Inmunoglobulina G
3.
Microorganisms ; 11(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38138042

RESUMEN

Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are transmitted through the fecal-oral route. HAV outbreaks and one HEV outbreak have been reported in Egypt. However, the impact of HAV-HEV co-infection is not known. In this study, we assessed HEV markers in acute HAV-infected patients (n = 57) enrolled in Assiut University hospitals. We found that 36.8% of HAV-infected patients were also positive for HEV markers (anti-HEV IgM and HEV RNA), while 63.2% of the patients were HAV mono-infected. Demographic and clinical criteria were comparable in both HAV mono-infected patients and HAV-HEV co-infected patients. Although liver enzymes were not significantly different between the two groups, liver transaminases were higher in the co-infected patients. Six patients developed acute liver failure (ALF); five of them were HAV-HEV-co-infected patients. The relative risk of ALF development was 8.5 times higher in HAV-HEV co-infection compared to mono-infection. Three cases of ALF caused by HAV-HEV co-infection were reported in children (below 18 years) and two cases were reported in adults. All patients developed jaundice, coagulopathy, and encephalopathy; all were living in rural communities. In conclusion: HAV-HEV co-infection can be complicated by ALF. The risk of ALF development in HAV-infected patients is higher when coinfection with HEV is present.

4.
World J Hepatol ; 9(9): 477-486, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28396718

RESUMEN

AIM: To investigate the prevalence and virological characteristics of occult hepatitis B virus (HBV) infections in patients with hematological malignancies in South Egypt. METHODS: Serum samples were collected from 165 patients with hematological malignancies to monitor titers of HBV DNA, hepatitis B surface antigen (HBsAg), and antibodies to HBV core (anti-HBc) and surface antigens. Serum samples negative for HBsAg and positive for anti-HBc were subjected to nucleic acid extraction and HBV DNA detection by real-time polymerase chain reaction. DNA sequences spanning the S region were analyzed in cases with occult HBV infection. In vitro comparative study of constructed 1.24-fold wild type and S protein mutant HBV genotype D clones was further performed. RESULTS: HBV DNA was detected in 23 (42.6%) of 54 patients with hematological malignancies who were HBsAg negative, but anti-HBc positive, suggesting the presence of occult HBV infection. The complete HBV genome was retrieved from 6 occult HBV patients, and P120T and S143L were detected in 3 and 2 cases, respectively. Site directed mutagenesis was done to produce 1.24-fold genotype D clones with amino acid mutations T120 and L143. The in vitro analyses revealed that a lower level of extracellular HBsAg was detected by chemiluminescence enzyme immunoassay (CLEIA) with the clone containing T120 mutation, compared with the wild type or the clone with S143L mutation despite the similar levels of extracellular and intracellular HBsAg detected by Western blot. Southern blot experiments showed that the levels of intracellular HBV DNA were not different between these clones. CONCLUSION: Occult HBV infection is common in patients with hematological malignancies and associated with P120T and S143L mutations. 120T mutation impairs the detection of HBsAg by CLEIA.

5.
World J Gastroenterol ; 19(37): 6214-20, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24115819

RESUMEN

AIM: To investigate characteristics of hepatitis B virus (HBV) implicated in HBV reactivation in patients with hematological malignancies receiving immunosuppressive therapy. METHODS: Serum samples were collected from 53 patients with hematological malignancies negative for hepatitis B surface antigen (HBsAg) before the start of and throughout the chemotherapy course. HBV reactivation was diagnosed when the HBsAg status changed from negative to positive after the initiation of chemotherapy and/or when HBV DNA was detected by real-time detection polymerase chain reaction (RTD-PCR). For detecting the serological markers of HBV infection, HBsAg as well as antibodies to the core antigen (anti-HBc) and to the surface antigen were measured in the sera by CEIA. Nucleic acids were extracted from sera, and HBV DNA sequences spanning the S gene were amplified by RTD-PCR. The extracted DNA was further subjected to PCR to amplify the complete genome as well as the specific genomic sequences bearing the enhancer II/core promoter/pre-core/core regions (nt 1628-2364). Amplicons were sequenced directly. RESULTS: Thirty-five (66%) of the 53 HBsAg-negative patients were found to be negative serologically for anti-HBc, and the remaining 18 (34%) patients were positive for anti-HBc. Five of the 53 (9.4%) patients with hematologic malignancies experienced HBV reactivation. Genotype D1 was detected in all five patients. Four types of mutant strains were detected in the S gene product of HBV strains and were isolated from 3 patients with HBV reactivation: T/S120, L143, and I126. HBV DNA was detected in the pretreatment HBsAg-negative samples in one of the five patients with HBV reactivation. In this patient, sequences encompassing the HBV full genome obtained from sera before the start of chemotherapy and at the time of de novo HBV hepatitis were detected and it showed 100% homology. Furthermore, in the phylogenetic tree, the sequences were clustered together, thereby indicating that this patient developed reactivation from an occult HBV infection. CONCLUSION: Past infection with HBV is a risk factor for HBV reactivation in Egypt. Mandatory anti-HBc screening prior to chemotherapy in patients with hematological malignancies is recommended.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/epidemiología , Virus de la Hepatitis B/patogenicidad , Hepatitis B/epidemiología , Hepatitis B/virología , Inmunosupresores/uso terapéutico , Activación Viral , Anciano , Biomarcadores/sangre , Niño , Preescolar , ADN Viral/sangre , Egipto/epidemiología , Femenino , Genotipo , Neoplasias Hematológicas/diagnóstico , Hepatitis B/diagnóstico , Anticuerpos contra la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Humanos , Incidencia , Masculino , Filogenia , Factores de Riesgo , Resultado del Tratamiento , Activación Viral/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA