Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8007): 365-372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509364

RESUMEN

Although modern humans left Africa multiple times over 100,000 years ago, those broadly ancestral to non-Africans dispersed less than 100,000 years ago1. Most models hold that these events occurred through green corridors created during humid periods because arid intervals constrained population movements2. Here we report an archaeological site-Shinfa-Metema 1, in the lowlands of northwest Ethiopia, with Youngest Toba Tuff cryptotephra dated to around 74,000 years ago-that provides early and rare evidence of intensive riverine-based foraging aided by the likely adoption of the bow and arrow. The diet included a wide range of terrestrial and aquatic animals. Stable oxygen isotopes from fossil mammal teeth and ostrich eggshell show that the site was occupied during a period of high seasonal aridity. The unusual abundance of fish suggests that capture occurred in the ever smaller and shallower waterholes of a seasonal river during a long dry season, revealing flexible adaptations to challenging climatic conditions during the Middle Stone Age. Adaptive foraging along dry-season waterholes would have transformed seasonal rivers into 'blue highway' corridors, potentially facilitating an out-of-Africa dispersal and suggesting that the event was not restricted to times of humid climates. The behavioural flexibility required to survive seasonally arid conditions in general, and the apparent short-term effects of the Toba supereruption in particular were probably key to the most recent dispersal and subsequent worldwide expansion of modern humans.


Asunto(s)
Clima , Migración Humana , Animales , Humanos , Arqueología , Etiopía , Mamíferos , Estaciones del Año , Dieta/historia , Historia Antigua , Migración Humana/historia , Fósiles , Struthioniformes , Sequías , Peces
2.
Malar J ; 23(1): 265, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215297

RESUMEN

BACKGROUND: Accurate diagnosis and timely treatment are crucial in combating malaria. METHODS: A total of 449 samples were screened for Plasmodium falciparum infection by expert microscopy, qPCR, and three RDTs, namely Rapigen Biocredit Malaria Ag Pf (detecting HRP2 and pLDH on separate bands), Abbott NxTek Eliminate Malaria Ag Pf (detecting HRP2), and SD Bioline Malaria Ag Pf (detecting HRP2). hrp2/3 deletion typing was done by digital PCR. RESULTS: 45.7% (205/449) individuals tested positive by qPCR for P. falciparum with a mean parasite density of 12.5 parasites/µL. Using qPCR as reference, the sensitivity of microscopy was 28.3% (58/205), the Biocredit RDT was 52.2% (107/205), the NxTek RDT was 49.3% (101/205), and the Bioline RDT was 39.5% (81/205). When only samples with densities > 20 parasites/µL were included (n = 89), sensitivity of 62.9% (56/89) by microscopy, 88.8% (79/89) by Biocredit, 88.8% (79/89) by NxTek, and 78.7% (70/89) by Bioline were obtained. All three RDTs demonstrated specificities > 95%. The limits of detection (95% probability that a sample tested positive) was 4393 parasites/µL (microscopy), 56 parasites/µL (Biocredit, considering either HRP2 or pLDH), 84 parasites/µL (NxTek), and 331 parasites/µL (Bioline). None of the three qPCR-confirmed P. falciparum positive samples, identified solely through the pLDH target, or eight samples negative for all RDTs but qPCR-positive at densities > 20 parasites/µL carried hrp2/3 deletions. CONCLUSION: The Biocredit and NxTek RDTs demonstrated comparable diagnostic efficacies. All three RDTs performed better than microscopy.


Asunto(s)
Pruebas Diagnósticas de Rutina , Malaria Falciparum , Plasmodium falciparum , Sensibilidad y Especificidad , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Humanos , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/genética , Ghana , Pruebas Diagnósticas de Rutina/métodos , Preescolar , Adolescente , Adulto , Niño , Adulto Joven , Femenino , Persona de Mediana Edad , Masculino , Microscopía/métodos , Lactante , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Anciano , Anciano de 80 o más Años , Prueba de Diagnóstico Rápido
3.
J Food Sci Technol ; 61(7): 1315-1325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910922

RESUMEN

Tea is a natural dietary supplement rich in polyphenols and based on the manufacturing process, their polyphenol content also varies. In the present study, we have compared the in vitro antioxidant, anticancer and anti-inflammatory activities of green tea (GT), orthodox black tea (oBT) and CTC black tea (cBT). The analysis was carried out in 50:50 ethanol:water extracts. The total antioxidant capacity, total polyphenol content and free radical scavenging activity were found to be high in GT samples. HPLC profiling indicated a higher percentage of polyphenols like catechin, epicatechin, epigallocatechin and epigallocatechin-gallate in GT when compared to other samples. The comparison of the anticancer potential was done in breast cancer MDA MB-231 cells and it was found that GT has a higher percentage of cell growth inhibition than oBT and cBT. Anti-inflammatory effects were done in LPS stimulated RAW264.7 macrophage cells and here also GT showed maximum effects. This was confirmed by the lower production of iNOS, reduced level of ROS generation and proinflammatory cytokines such as MCP-1, IL-1ɑ, and IL-6 by GT. To conclude, the order for the biological effectiveness of different teas tested is in the order GT > oBT > cBT.

4.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958011

RESUMEN

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Ghana/epidemiología , Evolución Biológica , Brotes de Enfermedades
5.
Anal Chem ; 95(18): 7093-7099, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37102794

RESUMEN

A high-throughput droplet imbibition mass spectrometry (MS) experiment is reported for the first time that allows direct analysis of ultra-small volumes of complex mixtures. In this experiment, an array of optimized tips of glass capillaries containing the analyte solution is sampled by rapidly moving charged microdroplets, which picks up (i.e., imbibes) the analyte and transfers it to a proximal mass spectrometer. The advantages associated with this droplet imbibition experiment include (1) ultra-small sample consumption (1.3 nL/min), which reduces the matrix effect in complex mixture analysis, and (2) high surface activity, which eliminates ion suppression effects caused by competition for the space charge on the droplet surface. Collectively, the enhanced surface effect and small flow rates dramatically increase the sensitivity of the droplet imbibition MS approach. This was experimentally shown by constructing calibration curves for cocaine analysis in human raw urine and whole blood, achieving 2 and 7 pg/mL limits of detection, respectively. The high-throughput feature was demonstrated by analyzing five structurally different compounds in 20 s intervals. With the measured flow rate of 1.3 nL/min on a 5 µm glass tip size, the results described in the current study showcase droplet imbibition MS to be a powerful and high-throughput alternative for conventional nano-electrospray ionization (flow rate <100 nL/min), which is the most efficient method for transferring small sample volumes to mass spectrometers.


Asunto(s)
Análisis Químico de la Sangre , Espectrometría de Masa por Ionización de Electrospray , Urinálisis , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
Anal Chem ; 95(2): 1085-1094, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36534015

RESUMEN

Recent advancements in mass spectrometry (MS) now enable all levels of protein structures to be characterized, including primary protein sequence, post-translational modifications, and three-dimensional protein conformations. However, protein conformational studies by MS require the use of many separate techniques that are performed independently of each other. Herein, we described a contained-electrospray (ES) experiment that has potential to integrate peptide/protein cross-linking with the general MS workflow. In our experiment, cross-linking of protein/peptide occurs simultaneously with ionization after analytes, and cross-linkers are sprayed from two separate ES emitters. The online cross-linking process occurring in the charged microdroplet environment was optimized using trilysine peptide and bis(sulfosuccinimidyl)suberate cross-linker. We detected the electrostatic complex between analyte and cross-linker, the mono-linked intermediate, and the fully cross-linked product, allowing us to correctly predict the sequence of reaction events in the cross-linking process. Importantly, we observed that the terminal fully cross-linked product is composed of two distinct conformations. In one form, the product involved cross-linking between two ε-NH2 amines in lysine residues, while the other conformer was formed by a reaction between one ε-NH2 amine and the N-terminus. The experimental conditions for selecting one cross-linked species over others during the online ES ionization-MS analysis have been detailed. Appropriate parameters enabled the reaction between α-lactalbumin proteins and cross-linkers using a non-denaturing spray condition. These results establish a framework for a future development in high-throughput structural MS method, where all levels of protein information can be gathered in a single experiment.


Asunto(s)
Proteínas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Proteínas/química , Péptidos/química , Secuencia de Aminoácidos , Conformación Proteica , Reactivos de Enlaces Cruzados/química
7.
Anal Chem ; 95(13): 5635-5642, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947664

RESUMEN

Rare sugars have gained popularity in recent years due to their use in antiaging treatments, their ability to sweeten with few calories, and their ability to heal infections. Rare sugars are found in small quantities in nature, and they exist typically as isomeric forms of traditional sugars, rendering some challenges in their isolation, synthesis, and characterization. In this work, we present the first direct mass spectrometric approach for differentiating structural isomers of sucrose that differ only by their glycosidic linkages. The method employed a noncontact nanoelectrospray (nESI) platform capable of analyzing minuscule volumes (5 µL) of saccharides via the formation of halide adducts ([M+X]-; X = Cl and Br). Tandem mass spectrometry analysis of the five structural isomers of sucrose afforded diagnostic fragment ions that can be used to distinguish each isomer. Detailed mechanisms showcasing the distinct fragmentation pattern for each isomer are discussed. The method was applied to characterize and confirm the presence of all five selected rare sugars in raw honey complex samples. Aside from the five natural α isomers of sucrose, the method was also suitable for differentiating some ß isomers of the same glycosidic linkages, provided the monomeric sugar units are different. The halide adduct formation via the noncontact nESI source was also proven to be effective for oligosaccharides such as raffinose, ß-cyclodextrin, and maltoheptaose. The results from this study encourage the future development of methods that function with simple operation to enable straightforward characterization of small quantities of rare sugars.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Azúcares , Espectrometría de Masa por Ionización de Electrospray/métodos , Carbohidratos , Espectrometría de Masas en Tándem/métodos , Glicósidos , Sacarosa , Isomerismo
8.
Mass Spectrom Rev ; : e21826, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36524560

RESUMEN

Chemical analysis by analytical instrumentation has played a major role in disease diagnosis, which is a necessary step for disease treatment. While the treatment process often targets specific organs or compounds, the diagnostic step can occur through various means, including physical or chemical examination. Chemically, the genome may be evaluated to give information about potential genetic outcomes, the transcriptome to provide information about expression actively occurring, the proteome to offer insight on functions causing metabolite expression, or the metabolome to provide a picture of both past and ongoing physiological function in the body. Mass spectrometry (MS) has been elevated among other analytical instrumentation because it can be used to evaluate all four biological machineries of the body. In addition, MS provides enhanced sensitivity, selectivity, versatility, and speed for rapid turnaround time, qualities that are important for instance in clinical procedures involving the diagnosis of a pediatric patient in intensive care or a cancer patient undergoing surgery. In this review, we provide a summary of the use of MS to evaluate biomarkers for newborn screening and cancer diagnosis. As many reviews have recently appeared focusing on MS methods and instrumentation for metabolite analysis, we sought to describe the biological basis for many metabolomic and additional omics biomarkers used in newborn screening and how tandem MS methods have recently been applied, in comparison to traditional methods. Similar comparison is done for cancer screening, with emphasis on emerging MS approaches that allow biological fluids, tissues, and breath to be analyzed for the presence of diagnostic metabolites yielding insight for treatment options based on the understanding of prior and current physiological functions of the body.

9.
Analyst ; 148(20): 5270-5278, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37740330

RESUMEN

Saccharides are increasingly used as biomarkers and for therapeutic purposes. Their characterization is challenging due to their low ionization efficiencies and inherent structural heterogeneity. Here, we illustrate how the coupling of online droplet-based reaction, in a form of contained electrospray (ES) ion source, with liquid chromatography (LC) tandem mass spectrometry (MS/MS) allows the comprehensive characterization of sucrose isomers. We used the reaction between phenylboronic acid and cis-diols for on-the-fly derivatization of saccharides eluting from the LC column followed by in situ MS/MS analysis, which afforded diagnostic fragment ions that enabled differentiation of species indistinguishable by chromatography or mass spectrometry alone. For example, chromatograms differing only by 2% in retention times were flagged to be different based on incompatible MS/MS fragmentation patterns. This orthogonal LC-contained-ES-MS/MS method was applied to confirm the presence of turanose, palatinose, maltulose, and maltose, which are structural isomers of sucrose, in three different honey samples. The reported workflow does not require modification to existing mass spectrometers, and the contained-ES platform itself acts both as the ion source and the reactor, all promising widespread application.


Asunto(s)
Sacarosa , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Espectrometría de Masa por Ionización de Electrospray/métodos
10.
Angew Chem Int Ed Engl ; 62(51): e202311100, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37770409

RESUMEN

The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.

11.
Anal Chem ; 94(12): 5132-5139, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35293204

RESUMEN

Microfluidic paper-based analytical devices (µPADs) are emerging as a prominent platform for disease detection, specifically in developing countries. This paper device offer simplicity and affordability not typically seen in centralized laboratory settings. However, detection limits in µPADs are inadequate and often require test results to be read within a specific time interval to ensure accuracy. To overcome these challenges, we are developing an on-chip mass spectrometry (MS) detection strategy for immunoassays performed on paper substrates. Herein, we present our initial results from a proof-of-concept study toward the development of µPADs capable of storing immunoassay reagents within the confinements of the 3D device, automatic splitting of biofluid into four individual test zones, immuno-capture of the disease biomarker, and on-chip MS detection of the captured species. The reported study encourages the development of point-of-care and direct-to-customer testing using disposable µPADs to collect samples, followed by sensitive analysis using portable MSs. We demonstrate this capability using malaria Plasmodium falciparum histidine-rich protein 2 (PfHRP2) antigen detection.


Asunto(s)
Malaria , Técnicas Analíticas Microfluídicas , Humanos , Inmunoensayo/métodos , Malaria/diagnóstico , Espectrometría de Masas , Microfluídica , Papel
12.
Anal Chem ; 94(40): 14071-14078, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179275

RESUMEN

The ability to identify abnormalities in the body's saccharide profile is a promising means for early disease detection but requires analytical tools capable of detecting saccharides at low concentrations and/or for volume-limited samples. The preferred analysis approach for these compounds, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), often lacks sensitivity due to poor ionization efficiency. In this work, we employ a modified electrospray interface-termed contained-electrospray (contained-ESI) to couple accelerated droplet chemistry to conventional LC-MS for the online and automated separation, derivatization, and detection of saccharides. The chromatographic component enables complex sample and mixtures analysis with low sample volume requirements, while the enhanced reaction kinetics afforded by electrosprayed microdroplets facilitates rapid, on-the-fly derivatization to boost sensitivity. Derivatization occurs during ion formation as analytes elute from the column, eliminating the need for superfluous post-column derivatization hardware or complicated benchtop protocols. A grounded coupler was incorporated to shield the LC from the high-voltage ion source, and method conditions were optimized to accommodate the low flow rates preferred for microdroplet reactions. The new LC-contained-ESI-MS/MS platform was demonstrated for the analysis of several mono-, di-, and oligosaccharides using in-source droplet-based phenylboronic acid derivatization. Femtomole limits of detection were achieved for a 1 µL injection, representing sensitivity enhancement of 1-2 orders of magnitude over conventional LC-ESI-MS/MS without derivatization. In addition, isobaric saccharides that are difficult to differentiate by MS alone were easily distinguished. Method precision, accuracy, and linearity were established, and the ability to detect oligosaccharides at trace levels in human urine and plasma was demonstrated.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Ácidos Borónicos , Cromatografía Liquida/métodos , Humanos , Oligosacáridos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
13.
Anal Chem ; 94(27): 9618-9626, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759462

RESUMEN

Three-dimensional (3D) dried blood spheroids formed on hydrophobic paper are a new microsampling platform that can stabilize labile molecules in whole blood stored in ambient air at room temperature. In this study, we define the ideal conditions for preparing the dried blood spheroids. The physical morphology of 3D dried blood spheroids is found to be largely impacted by the unregulated relative humidity of the surrounding environment. A solution of KOH placed in an enclosed chamber offers a facile way to control humidity. We also report a general polymer coating strategy that serves to stabilize dried biofluids when prepared under ordinary ambient conditions without regulation of humidity. Dried blood spheroids coated in xanthan gum polymer exhibited enhanced chemical and physical stability. The same xanthan gum polymer provided chemical stability for 2D dried blood spots when compared with the conventional noncoated samples. We have expanded the application of xanthan gum to less viscous biofluids such as urine to induce an artificial protective barrier that also provides enhanced stability for labile performance-enhancing drugs stored at room temperature. The impact of polymer coating on direct biofluid analysis via paper spray mass spectrometry was determined by comparing the relative ionization efficiency, percent difference of ionization efficiency, and matrix effects of performance-enhancing drugs that were spiked in undiluted raw urine. Acceptable analytical performance was recorded for all three criteria, including high ionization efficiencies that ranged from 77 to 93% in the presence of the xanthan gum polymer.


Asunto(s)
Líquidos Corporales , Sustancias para Mejorar el Rendimiento , Pruebas con Sangre Seca/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas/métodos , Polímeros
14.
Anal Chem ; 94(10): 4417-4425, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226803

RESUMEN

Dry-state microsampling techniques are convenient and advantageous for sample collection in resource-limited settings, including healthcare systems designed for the underserved population. In this work, a microsampling platform based on an embossed hydrophobic paper substrate is introduced together with three-dimensional (3D) printed cartridges that offer opportunities for rapid (<30 min) drying of the collected samples while also preserving sample integrity when the embossed paper chip is shipped at room temperature. More importantly, a new pinhole paper spray ionization method was developed that facilitates direct mass spectrometry (MS) analysis of the dried blood samples without prior sample preparation. We compared the direct pinhole paper spray MS method with a liquid chromatographic (LC) MS approach that relied upon electrospray ionization (ESI) after analytes present in the blood sample were extracted through liquid-liquid extraction. Limits of detection as low as 0.12 and 0.49 ng/mL were calculated for cocaine and its metabolite benzoylecgonine, respectively, when using the direct pinhole paper spray MS method. Analytical merits such as precision and accuracy, recovery, carryover effects, and analyte stability were all quantified for this new paper spray method and compared to the traditional LC-ESI-MS. Although LC-ESI-MS was observed to be 10× more sensitive, the linear dynamic range for both methods was determined to be the same, in the range of 1-500 ng/mL for both cocaine and benzoylecgonine analytes. When fully developed, the current microsampling strategy could offer an easy-to-use kit that can enable a more effective MS analysis of 20 µL dried blood samples delivered by mail. Both sensitivity (10×) and sample stability are found to be more superior for blood prepared in the embossed hydrophobic paper compared to samples prepared in the planar hydrophilic paper.


Asunto(s)
Cocaína , Cromatografía Liquida , Límite de Detección , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Temperatura
15.
Anal Chem ; 94(43): 15093-15099, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251285

RESUMEN

The Claisen rearrangement of aromatic allyl phenyl ether to 2-allyl phenol is known to be induced by heat, acid, and air-water interfacial (on-water) effects. In this work, we show that the combination of acid and interfacial effects in an "on-droplet" experiment accelerates this reaction even further (by a factor >10×). The reaction acceleration was achieved through a droplet imbibition mass spectrometry (MS) experiment that allows reactants to be deposited on rapidly moving (100 m/s), charged microdroplets while avoiding turbulent mixing. In this case, reactants are concentrated mainly at the surface of the short-lived microdroplets (microseconds), enabling enhanced interfacial effects. By doping n-butylamine in the spray solvent and subsequently exposing the resultant electrosprayed microdroplets to formic acid vapor, the ketone intermediate, 6-allylcyclohexa-2,4-dien-1-one, involved in this Claisen rearrangement was captured and characterized by tandem MS, successfully differentiating it from the corresponding isobaric reactant (allyl phenyl ether) and product (2-allyl phenol). Similar results showing rate acceleration and subsequent capture of the ketone intermediate via an instantaneous reaction with n-butylamine were demonstrated for p-methyl and p-nitro substituted allyl phenyl ether. Density functional theory calculations confirmed that the on-droplet reaction condition, with a high abundance of proton sources, is different from the neutral rearrangement. With a calculated free energy of activation of 5.2 kcal mol-1 for the protonated reactant, the on-droplet experimental condition provides a unique mechanism for catalyzing the Claisen rearrangement on the microsecond lifetime of the droplets. This experiment marks the first direct capture and detection of a short-lived ketone intermediate in the Claisen rearrangement, a task that is challenged by a thermodynamically favorable tautomerization step to give a more stabilized product (by 20 kcal/mol).


Asunto(s)
Éteres Fenílicos , Agua , Solventes/química , Agua/química , Cetonas
16.
Anal Chem ; 94(41): 14377-14384, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36195476

RESUMEN

In this work, we have developed a paper-based microfluidic device capable of remote biofluid collection followed by an analysis of the dried clinical samples using a miniature mass spectrometer. We have evaluated a portable mass spectrometer as a possible surveillance platform by analyzing the clinical malaria samples (whole blood) collected from Ghana. We synthesized pH-sensitive ionic probes and coupled them with monoclonal antibodies specific to the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) malaria antigen. We then used the antibody-ionic probe conjugates in a paper-based immunoassay to capture PfHRP2 antigen from untreated whole blood. After the immunoassay, the bound ionic probes were cleaved, and the released mass tags were analyzed through an on-chip paper spray mass spectrometry strategy. During process optimization, we determined the detection limit for PfHRP2 in untreated human serum to be 0.216 nmol/L when using the miniature mass spectrometer. This sensitivity is comparable to the World Health Organization's suggested threshold of 0.227 nmol/L for PfHRP2, proving that our method will be applicable to diagnose symptomatic malaria infection (≥200 parasites per µL blood). The paper device can be stored at room temperature for at least 25 days without affecting the clinical outcome, with each stored paper chip offering good repeatability and reproducibility (RSD = 4-12%). The stability and sensitivity of the developed paper-based immunoassay platform will allow miniature mass spectrometers to be used for point-of-care malaria detection as well as in large-scale surveillance screening to aid eradication programs.


Asunto(s)
Malaria Falciparum , Malaria , Anticuerpos Monoclonales , Antígenos de Protozoos , Histidina , Humanos , Inmunoensayo/métodos , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Espectrometría de Masas , Plasmodium falciparum/química , Proteínas Protozoarias , Reproducibilidad de los Resultados
17.
Anal Chem ; 94(5): 2358-2365, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35072466

RESUMEN

Cellulose thread substrates offer a platform for microsampling and reactive ionization of free fatty acid (FFA) isomers for direct differentiation by mass spectrometry. Ambient corona discharge forms when direct current high voltage is applied to the tiny subfibers on the thread substrate in the presence of a polar spray solvent (MeOH/H2O, 2:1, v/v), facilitating chemical reactions across a C═C bond of unsaturated fatty acids. The process was applied for diagnosis of obesity, which we observed to show better discriminatory power when compared to determinations based on body mass index. Overall, the integrated reactive thread-based platform is capable of (i) microsampling and dry-state, room-temperature storage (>30 days) of the biofluids, (ii) in-capillary liquid/liquid extraction, and (iii) in situ epoxidation reactions to locate the C═C bond position in unsaturated fatty acids via reactions with reactive oxygen species present in ambient corona discharge. The study showcased the ability to correctly characterize FFAs, including degree of unsaturation, and the determination of their relative concentrations in clinical biofluid samples.


Asunto(s)
Ácidos Grasos no Esterificados , Ácidos Grasos Insaturados , Ácidos Grasos Insaturados/química , Humanos , Isomerismo , Espectrometría de Masas/métodos , Obesidad/diagnóstico
18.
Malar J ; 21(1): 107, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346205

RESUMEN

BACKGROUND: Despite decades of prevention efforts, the burden of malaria in pregnancy (MiP) remains a great public health concern. Sulfadoxine-pyrimethamine (SP), used as intermittent preventive treatment in pregnancy (IPTp-SP) is an important component of the malaria prevention strategy implemented in Africa. However, IPTp-SP is under constant threat from parasite resistance, thus requires regular evaluation to inform decision-making bodies. METHODS: In two malaria endemic communities in the Volta region (Adidome and Battor), a cross-sectional hospital-based study was conducted in pregnant women recruited at their first antenatal care (ANC) visit and at delivery. Basic clinical and demographic information were documented and their antenatal records were reviewed to confirm IPTp-SP adherence. Peripheral and placental blood were assayed for the presence of Plasmodium falciparum parasites by quantitative polymerase chain reaction (qPCR). One hundred and twenty (120) positive samples were genotyped for mutations associated with SP resistance. RESULTS: At first ANC visit, P. falciparum prevalence was 28.8% in Adidome and 18.2% in Battor. At delivery, this decreased to 14.2% and 8.2%, respectively. At delivery, 66.2% of the women had taken at least the recommended 3 or more doses of IPTp-SP and there was no difference between the two communities. Taking at least 3 IPTp-SP doses was associated with an average birth weight increase of more than 360 g at both study sites compared to women who did not take treatment (p = 0.003). The Pfdhfr/Pfdhps quintuple mutant IRNI-A/FGKAA was the most prevalent (46.7%) haplotype found and the nonsynonymous Pfdhps mutation at codon A581G was higher at delivery among post-SP treatment isolates (40.6%) compared to those of first ANC (10.22%). There was also an increase in the A581G mutation in isolates from women who took 3 or more IPTp-SP. CONCLUSIONS: This study confirms a positive impact following the implementation of the new IPTp-SP policy in Ghana in increasing the birth weight of newborns. However, the selection pressure exerted by the recommended 3 or more doses of IPTp-SP results in the emergence of parasites carrying the non-synonymous mutation on codon A581G. This constant selective pressure calls into question the time remaining for the clinical utility of IPTp-SP treatment during pregnancy in Africa.


Asunto(s)
Antimaláricos , Malaria Falciparum , Plasmodium falciparum/efectos de los fármacos , Complicaciones Parasitarias del Embarazo , Antimaláricos/uso terapéutico , Estudios Transversales , Combinación de Medicamentos , Resistencia a Medicamentos , Femenino , Ghana/epidemiología , Humanos , Recién Nacido , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Placenta , Embarazo , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/prevención & control , Atención Prenatal , Pirimetamina , Sulfadoxina
19.
Photochem Photobiol Sci ; 21(3): 303-318, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35195891

RESUMEN

The absorption spectra of a series of dithiocarboxylates were investigated in the ultraviolet-visible region. Two questions that this study aimed to address were as follows: (1) What transitions give rise to the features in the electronic spectra? And (2) what are the long- and short-range substituent effects on the absorption spectra? A series of 11 dithiocarboxylates were prepared as organic soluble salts. Time-dependent density functional theory (TDDFT) was used to calculate excited state energies and oscillator strengths of electronic transitions. TDDFT at the CAM-B3LYP/def2-TZVPD level of theory predicts two low-energy n → π* transitions and two π → π* transitions at higher energy, consistent with the experimental spectra. This state ordering and density is in contrast to the better studied thiocarbonyls for which only two transitions within the singlet manifold appear in the UV-visible region. For derivatives of dithiobenzoate, the energy of the three lowest energy states are insensitive to changes to substituents para to the dithiocarboxylate group. In contrast, the energy of the highest ππ* state varies by 0.78 eV. This work shows that the results of TDDFT calculations can be used to predict the electronic absorption spectra of dithiocarboxylates, providing a useful tool for designing dithiocarboxylate light absorbers.


Asunto(s)
Electrónica
20.
Ann Emerg Med ; 79(2): 148-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34742591

RESUMEN

STUDY OBJECTIVE: We aimed to evaluate and characterize the scale and relationships of emergency department (ED) visits and excess mortality associated with the early phase of the COVID-19 pandemic in the territory of Hong Kong. METHODS: We conducted a territory-wide, retrospective cohort study to compare ED visits and the related impact of the COVID-19 pandemic on mortality. All ED visits at 18 public acute hospitals in Hong Kong between January 1 and August 31 of 2019 (n=1,426,259) and 2020 (n=1,035,562) were included. The primary outcome was all-cause mortality in the 28 days following an ED visit. The secondary outcomes were weekly number of ED visits and diagnosis-specific mortality. RESULTS: ED visits decreased by 27.4%, from 1,426,259 in 2019 to 1,035,562 in 2020. Overall period mortality increased from 28,686 (2.0%) in 2019 to 29,737 (2.9%) in 2020. The adjusted odds ratio for 28-day, all-cause mortality in the pandemic period of 2020 relative to 2019 was 1.26 (95% confidence interval 1.24 to 1.28). Both sexes, age more than 45 years, all triage categories, all social classes, all ED visit periods, epilepsy (odds ratio 1.58, 95% confidence interval 1.20 to 2.07), lower respiratory tract infection, and airway disease had higher adjusted ORs for all-cause mortality. CONCLUSION: A significant reduction in ED visits in the first 8 months of the COVID-19 pandemic was associated with an increase in deaths certified in the ED. The government must make provisions to encourage patients with alarming symptoms, mental health conditions, and comorbidities to seek timely emergency care, regardless of the pandemic.


Asunto(s)
COVID-19/mortalidad , Servicio de Urgencia en Hospital/estadística & datos numéricos , Utilización de Instalaciones y Servicios/estadística & datos numéricos , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Enfermedades no Transmisibles/mortalidad , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Hong Kong , Humanos , Masculino , Persona de Mediana Edad , Mortalidad , Pandemias , Estudios Retrospectivos , SARS-CoV-2 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA