RESUMEN
Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.
Asunto(s)
Linfocitos T CD4-Positivos , Regulación Viral de la Expresión Génica , Infecciones por VIH , VIH-1 , Latencia del Virus , Humanos , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN Viral/aislamiento & purificación , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/aislamiento & purificación , VIH-1/patogenicidad , Memoria Inmunológica , Microfluídica , Necroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Antirretrovirales/farmacología , Antirretrovirales/uso terapéuticoRESUMEN
It is becoming more apparent in tissue engineering applications that fine temporal control of multiple therapeutics is desirable to modulate progenitor cell fate and function. Herein, the independent temporal control of the co-delivery of miR-148b and miR-21 mimic plasmonic nanoparticle conjugates to induce osteogenic differentiation of human adipose stem cells (hASCs), in a de novo fashion, is described. By applying a thermally labile retro-Diels-Alder caging and linkage chemistry, these miRNAs can be triggered to de-cage serially with discrete control of activation times. The method relies on illumination of the nanoparticles at their resonant wavelengths to generate sufficient local heating and trigger the untethering of the Diels-Alder cycloadduct. Characterization of the photothermal release using fluorophore-tagged miRNA mimics in vitro is carried out with fluorescence measurements, second harmonic generation, and confocal imaging. Osteogenesis of hASCs from the sequential co-delivery of miR-21 and miR-148b mimics is assessed using xylenol orange and alizarin red staining of deposited minerals, and quantitative polymerase chain reaction for gene expression of osteogenic markers. The results demonstrate that sequential miRNA mimic activation results in upregulation of osteogenic markers and mineralization relative to miR-148b alone, and co-activation of miR-148b and miR-21 at the same time.
Asunto(s)
Tejido Adiposo/citología , Nanopartículas del Metal/administración & dosificación , MicroARNs/administración & dosificación , Osteogénesis , Células Madre/citología , Recuento de Células , Células Cultivadas , Oro/administración & dosificación , Humanos , Nanopartículas del Metal/ultraestructura , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Plata/administración & dosificación , Espectrofotometría Ultravioleta , Espectrometría Raman , TransfecciónRESUMEN
The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.
Asunto(s)
Portadores de Fármacos/efectos de la radiación , Nanopartículas del Metal/efectos de la radiación , MicroARNs/efectos de la radiación , Poliestirenos/efectos de la radiación , Plata/química , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Liberación de Fármacos , Cinética , Luz , Nanopartículas del Metal/química , MicroARNs/química , Poliestirenos/síntesis química , Poliestirenos/química , Microscopía de Generación del Segundo Armónico , Resonancia por Plasmón de SuperficieRESUMEN
Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system.
Asunto(s)
Coloides , Oro/química , Nanopartículas del Metal/química , MicroARNs/química , Microscopía Electrónica de Transmisión , FotoquímicaRESUMEN
The development of tunable, ultrasound-responsive hydrogels that can deliver protein payload on-demand when exposed to focused ultrasound is described in this study. Reversible Diels-Alder linkers, which undergo a retro reaction when stimulated with ultrasound, were used to cross-link chitosan hydrogels with entrapped FITC-BSA as a model protein therapeutic payload. Two Diels-Alder linkage compositions with large differences in the reverse reaction energy barriers were compared to explore the influence of linker composition on ultrasound response. Selected physicochemical properties of the hydrogel construct, its basic degradation kinetics, and its cytocompatibility were measured with respect to Diels-Alder linkage composition. Focused ultrasound initiated the retro Diels-Alder reaction, controlling the release of the entrapped payload while also allowing for real-time visualization of the ongoing process. Additionally, increasing the focused ultrasound amplitude and time correlated with an increased rate of protein release, indicating stimuli responsive control.
Asunto(s)
Quitosano , Hidrogeles , Quitosano/química , Reacción de Cicloadición , Hidrogeles/químicaRESUMEN
Despite evidence that microRNAs (miRNAs) are essential in modulating tumorigenesis, a major challenge in cancer treatment is to achieve tumor-specific selectivity and efficient yet safe delivery of miRNAs in vivo. In this study, we have developed a light-inducible silver nanoparticle nucleic acid delivery system that demonstrates precise spatiotemporal control, high cellular uptake, low cytotoxicity, escape from endosomes and release of functional miRNA into the cytosol. Using this approach, we delivered exogenous miR-148b to induce apoptosis in Ras-expressing keratinocytes and murine squamous cell carcinoma cells while avoiding cytotoxicity in untransformed keratinocytes. When administered to transgenic mice with HRasG12V-driven skin tumors, a single dose of silver nanoparticle conjugates followed by 415 nm LED irradiation at the tumor site caused a rapid and sustained reduction in tumor volume by 92.8%, recruited T cells to the tumor site, and acted as a potent immunomodulator by polarizing the cytokine balance toward Th1 both locally and systemically. In summary, our results demonstrate that spatiotemporal controlled miR-148b mimic delivery can promote tumor regression efficiently and safely.
Asunto(s)
Carcinoma de Células Escamosas , Nanopartículas del Metal , MicroARNs , Nanopartículas , Animales , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Inflamación , Ratones , MicroARNs/genética , PlataRESUMEN
This study explores the use of differential heating of magnetic nanoparticles with different sizes and compositions (MFe2O4 (M = Fe, Co)) for heteroplexed temporal controlled release of conjugated fluorophores from the surface of nanoparticles. By exploiting these differences, we were able to control the amount of hysteretic heating occurring with the distinct sets of magnetic nanoparticles using the same applied alternating magnetic field radio frequency (AMF-RF). Using thermally labile retro-Diels-Alder linkers conjugated to the surface of nanoparticles, the fluorescent payload from the different nanoparticles disengaged when sufficient energy was locally generated during hysteretic heating. 1H, 13C NMR, ESI-MS, and SIMS characterized the thermally responsive fluorescent cycloadducts used in this study; the Diels Alder cycloadducts were modeled using density functional theory (DFT) computations. The localized point heating of the different nanoparticle compositions drove the retro-Diels-Alder reaction at different times resulting in higher release rates of fluorophores from the CoFe2O4 compared to the Fe3O4 nanoparticles.
RESUMEN
Differentiation of progenitors in a controlled environment improves the repair of critical-sized calvarial bone defects; however, integrating micro RNA (miRNA) therapy with 3D printed scaffolds still remains a challenge for craniofacial reconstruction. In this study, we aimed to engineer three-dimensional (3D) printed hybrid scaffolds as a new ex situ miR-148b expressing delivery system for osteogenic induction of rat bone marrow stem cells (rBMSCs) in vitro, and also in vivo in critical-sized rat calvarial defects. miR-148b-transfected rBMSCs underwent early differentiation in collagen-infilled 3D printed hybrid scaffolds, expressing significant levels of osteogenic markers compared to non-transfected rBMSCs, as confirmed by gene expression and immunohistochemical staining. Furthermore, after eight weeks of implantation, micro-computed tomography, histology and immunohistochemical staining results indicated that scaffolds loaded with miR-148b-transfected rBMSCs improved bone regeneration considerably compared to the scaffolds loaded with non-transfected rBMSCs and facilitated near-complete repair of critical-sized calvarial defects. In conclusion, our results demonstrate that collagen-infilled 3D printed scaffolds serve as an effective system for miRNA transfected progenitor cells, which has a promising potential for stimulating osteogenesis and calvarial bone repair.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Colágeno/farmacología , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , Impresión Tridimensional , Cráneo/patología , Andamios del Tejido/química , Transfección , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Ratas Endogámicas F344RESUMEN
Photothermal release of oligonucleotides from the surface of plasmonic nanoparticles represents a promising platform for spatiotemporal controlled drug delivery. Here we demonstrate the use of novel gold-silver-gold core-shell-shell (CSS) nanoparticles to study the photothermal cleaving and release of micro-RNA (miRNA) mimics or small interfering RNA (siRNA) under nearinfrared (NIR) irradiation. The furan-maleimide-based Diels-Alder adduct cleaves thermally above 60 °C and is used to bind siRNA to the colloidal nanoparticle surface in water. We investigate the photothermal cleaving kinetics of siRNA under different NIR laser powers using surface-sensitive time-dependent second-harmonic generation (SHG) spectroscopy. The photothermal release of siRNA from the surface of CSS nanoparticles is significantly higher than that from the surface of gold nanoparticles (GNPs) under similar experimental conditions. These results demonstrate that plasmonic CSS nanoparticles with photothermal cleaving linkers have important potential applications for nanoparticle-based NIR-mediated drug-delivery systems.
RESUMEN
The present study explores alternate pericyclic chemistries for tethering amine-terminal biomolecules onto silver nanoparticles. Employing the versatile tool of the retro-Diels-Alder (rDA) reaction, three thermally-labile cycloadducts are constructed that cleave at variable temperature ranges. While the reaction between furan and maleimide has widely been reported, the current study also evaluates the reverse reaction kinetics between thiophene-maleimide, and pyrrole-maleimide cycloadducts. Density Functional Theorem (DFT) calculations used to model and plan the experiments, predict energy barriers for the thiophene-maleimide reverse reaction to be greatest, and the pyrrole-maleimide barriers the lowest. Based on the computational analyses, it is projected that the cycloreversion rate would occur slowest with the thiophene, followed by furan, and finally pyrrole would yield the promptest release. These thermally-responsive linkers, characterized by Electrospray Ionization Mass Spectrometry, 1H and 13C NMR, are thiol-linked to silver nanoparticles and conjugate single stranded siRNA mimics with 5' fluorescein tag. Second harmonic generation spectroscopy (SHG) and fluorescence spectroscopy are used to measure release and rate of release. The SHG decay constants and fluorescence release profiles obtained for the three rDA reactions confirm the trends obtained from the DFT computations.