Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 599(7884): 296-301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707293

RESUMEN

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Homeostasis , Termogénesis , Adaptación Fisiológica , Adipocitos Beige/metabolismo , Animales , Frío , Metabolismo Energético , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(44): E4716-25, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25331887

RESUMEN

Genomic instability is a hallmark of cancer. The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role of WWOX in DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63-linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instability and provide an advantage for clonal expansion of neoplastic cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Neoplasias/metabolismo , Oxidorreductasas/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Reparación del ADN , Regulación Neoplásica de la Expresión Génica/genética , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Oxidorreductasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Oxidorreductasa que Contiene Dominios WW
3.
J Biol Chem ; 289(13): 8865-80, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24550385

RESUMEN

WW domains are small modules present in regulatory and signaling proteins that mediate specific protein-protein interactions. The WW domain-containing oxidoreductase (WWOX) encodes a 46-kDa tumor suppressor that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. Based on its ligand recognition motifs, the WW domain family is classified into four groups. The largest one, to which WWOX belongs, recognizes ligands with a PPXY motif. To pursue the functional properties of the WW domains of WWOX, we employed mass spectrometry and phage display experiments to identify putative WWOX-interacting partners. Our analysis revealed that the first WW (WW1) domain of WWOX is the main functional interacting domain. Furthermore, our study uncovered well known and new PPXY-WW1-interacting partners and shed light on novel LPXY-WW1-interacting partners of WWOX. Many of these proteins are components of multiprotein complexes involved in molecular processes, including transcription, RNA processing, tight junction, and metabolism. By utilizing GST pull-down and immunoprecipitation assays, we validated that WWOX is a substrate of the E3 ubiquitin ligase ITCH, which contains two LPXY motifs. We found that ITCH mediates Lys-63-linked polyubiquitination of WWOX, leading to its nuclear localization and increased cell death. Our data suggest that the WW1 domain of WWOX provides a versatile platform that links WWOX with individual proteins associated with physiologically important networks.


Asunto(s)
Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Humanos , Biblioteca de Péptidos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitinación , Oxidorreductasa que Contiene Dominios WW
4.
Cell Mol Life Sci ; 71(23): 4589-99, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245215

RESUMEN

The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.


Asunto(s)
Transformación Celular Neoplásica/genética , Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Neoplasias/genética , Oxidorreductasas/genética , Proteínas Supresoras de Tumor/genética , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Oxidorreductasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW
5.
Elife ; 112022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189922

RESUMEN

The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability.


Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells' survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.


Asunto(s)
Neoplasias de la Mama , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Neoplasias de la Mama/genética , Proteína Quinasa CDC2/metabolismo , ADN , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Glucosa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina/genética
6.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34847077

RESUMEN

The dysregulation of energy homeostasis in obesity involves multihormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine ß3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared with that of other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). ß3-Adrenergic receptor downregulation also occurs after high-fat diet feeding, concurrent with catecholamine resistance and elevated inflammation. This downregulation is recapitulated in vitro by TNF-α treatment (heterologous desensitization). Both homologous and heterologous desensitization of Adrb3 were triggered by induction of the pseudokinase TRIB1 downstream of the EPAC/RAP2A/PI-PLC pathway. TRIB1 in turn degraded the primary transcriptional activator of Adrb3, CEBPα. EPAC/RAP inhibition enhanced catecholamine-stimulated lipolysis and energy expenditure in obese mice. Moreover, adipose tissue expression of genes in this pathway correlated with body weight extremes in a cohort of genetically diverse mice and with BMI in 2 independent cohorts of humans. These data implicate a signaling axis that may explain reduced hormone-stimulated lipolysis in obesity and resistance to therapeutic interventions with ß3-adrenergic receptor agonists.


Asunto(s)
Adipocitos/metabolismo , Catecolaminas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Obesidad/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Células 3T3-L1 , Animales , Regulación hacia Abajo/genética , Resistencia a Medicamentos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Lipólisis/efectos de los fármacos , Lipólisis/genética , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/genética , Receptores Adrenérgicos beta 3/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822771

RESUMEN

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.


Asunto(s)
Aminopiridinas/farmacología , Glucemia/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gluconeogénesis/efectos de los fármacos , Quinasa I-kappa B/metabolismo , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Glucemia/genética , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/genética , Gluconeogénesis/genética , Quinasa I-kappa B/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
8.
Cell Rep ; 35(13): 109331, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192547

RESUMEN

The contribution of adipose-derived FGF21 to energy homeostasis is unclear. Here we show that browning of inguinal white adipose tissue (iWAT) by ß-adrenergic agonists requires autocrine FGF21 signaling. Adipose-specific deletion of the FGF21 co-receptor ß-Klotho renders mice unresponsive to ß-adrenergic stimulation. In contrast, mice with liver-specific ablation of FGF21, which eliminates circulating FGF21, remain sensitive to ß-adrenergic browning of iWAT. Concordantly, transgenic overexpression of FGF21 in adipocytes promotes browning in a ß-Klotho-dependent manner without increasing circulating FGF21. Mechanistically, we show that ß-adrenergic stimulation of thermogenic gene expression requires FGF21 in adipocytes to promote phosphorylation of phospholipase C-γ and mobilization of intracellular calcium. Moreover, we find that the ß-adrenergic-dependent increase in circulating FGF21 occurs through an indirect mechanism in which fatty acids released by adipocyte lipolysis subsequently activate hepatic PPARα to increase FGF21 expression. These studies identify FGF21 as a cell-autonomous autocrine regulator of adipose tissue function.


Asunto(s)
Adipocitos/metabolismo , Comunicación Autocrina , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Termogénesis/genética , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Agonistas Adrenérgicos beta , Animales , Comunicación Autocrina/genética , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Lipólisis , Hígado/metabolismo , Ratones , Especificidad de Órganos , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
9.
Cell Metab ; 32(6): 1012-1027.e7, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152322

RESUMEN

Hepatic TANK (TRAF family member associated NFκB activator)-binding kinase 1 (TBK1) activity is increased during obesity, and administration of a TBK1 inhibitor reduces fatty liver. Surprisingly, liver-specific TBK1 knockout in mice produces fatty liver by reducing fatty acid oxidation. TBK1 functions as a scaffolding protein to localize acyl-CoA synthetase long-chain family member 1 (ACSL1) to mitochondria, which generates acyl-CoAs that are channeled for ß-oxidation. TBK1 is induced during fasting and maintained in the unphosphorylated, inactive state, enabling its high affinity binding to ACSL1 in mitochondria. In TBK1-deficient liver, ACSL1 is shifted to the endoplasmic reticulum to promote fatty acid re-esterification in lieu of oxidation in response to fasting, which accelerates hepatic lipid accumulation. The impaired fatty acid oxidation in TBK1-deficient hepatocytes is rescued by the expression of kinase-dead TBK1. Thus, TBK1 operates as a rheostat to direct the fate of fatty acids in hepatocytes, supporting oxidation when inactive during fasting and promoting re-esterification when activated during obesity.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Grasos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
10.
Oncotarget ; 7(4): 4344-55, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26675548

RESUMEN

For many decades genomic instability is considered one of the hallmarks of cancer. Role of the tumor suppressor WWOX (WW domain-containing oxidoreductase) in DNA damage response upon double strand breaks has been recently revealed. Here we demonstrate unforeseen functions for WWOX upon DNA single strand breaks (SSBs) checkpoint activation. We found that WWOX levels are induced following SSBs and accumulate in the nucleus. WWOX deficiency is associated with reduced activation of ataxia telangiectasia and Rad3-related protein (ATR) checkpoint proteins and increased chromosomal breaks. At the molecular level, we show that upon SSBs WWOX is modified at lysine 274 by ubiquitination mediated by the ubiquitin E3 ligase ITCH and interacts with ataxia telangiectasia-mutated (ATM). Interestingly, ATM inhibition was associated with reduced activation of ATR checkpoint proteins suggesting that WWOX manipulation of ATR checkpoint proteins is ATM-dependent. Taken together, the present findings indicate that WWOX plays a key role in ATR checkpoint activation, while its absence might facilitate genomic instability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Daño del ADN/fisiología , Reparación del ADN/fisiología , Oxidorreductasas/metabolismo , Oxidorreductasas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclo Celular , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Técnicas para Inmunoenzimas , Células MCF-7 , Ratones , Ratones Noqueados , Oxidorreductasas/genética , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética , Ubiquitinación , Oxidorreductasa que Contiene Dominios WW
11.
Cancer Res ; 76(20): 6107-6117, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27550453

RESUMEN

Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (WwoxΔosx1) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in WwoxΔosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR.


Asunto(s)
Neoplasias Óseas/etiología , Osteosarcoma/etiología , Oxidorreductasas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Neoplasias Óseas/genética , Diferenciación Celular , Linaje de la Célula , Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Osteoblastos/fisiología , Osteogénesis , Osteosarcoma/genética , Fragmentos de Péptidos/sangre , Procolágeno/sangre , Oxidorreductasa que Contiene Dominios WW
12.
Mol Cell Oncol ; 2(4): e1008288, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308504

RESUMEN

Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be "hot spots" for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity.

13.
Acta Biochim Pol ; 57(3): 285-98, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20532257

RESUMEN

The distribution of apoA-I among apoA-I-containing lipoprotein (AI-Lp) subclasses in plasma was studied by immunoblotting utilizing agarose gel matrix incorporating anti-apoA-I as the transfer medium. Nine AI-Lp subclasses were detected in the plasma of normolipidemics, with relative molecular masses ranging from 70,000 to ≥ 354,000 and diameters from 7.12 to ≥ 11.6 nm. The mass distribution of AI-Lp subclasses was significantly different between males and females, and some subclasses increased gradually with age while others decreased. There was a significant strong positive correlation between subclass 1 (M(r) 70,000­75,000) and subclass 3 (M(r) 105,000­126,000) in all subjects and age groups. Analysis of similar AI-Lp or HDL subclasses reported in the literature showed variability in the sizes reported by various workers. This stresses the need for a unified classification of such subclasses, and this work contributes to this direction. The quantitative nature of the method used in this work compared with the semiquantitative approaches used earlier makes it a better method for the study of the quantitative changes of the subclasses in various physiological and pathological states. The method helps to generate ideas for in vitro and in vivo studies of apoA-I exchange among subclasses and in vivo kinetic studies. Conclusion. Plasma level of the AILp subclasses varied quantitatively with age and gender, and strong correlations were detected between some subclasses. This work contributes to a better classification of AI-Lp subclasses according to their size. Comparison of the method used here with the methods reported in the literature revealed its advantages.


Asunto(s)
Apolipoproteína A-I/sangre , Apolipoproteína A-I/clasificación , Lipoproteínas/sangre , Adulto , Apolipoproteína A-I/química , Femenino , Humanos , Immunoblotting , Lípidos/sangre , Lipoproteínas/química , Lipoproteínas/clasificación , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA