Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Connect Tissue Res ; : 1-19, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246090

RESUMEN

Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.

2.
J Med Syst ; 48(1): 53, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775899

RESUMEN

Myocardial Infarction (MI) commonly referred to as a heart attack, results from the abrupt obstruction of blood supply to a section of the heart muscle, leading to the deterioration or death of the affected tissue due to a lack of oxygen. MI, poses a significant public health concern worldwide, particularly affecting the citizens of the Chittagong Metropolitan Area. The challenges lie in both prevention and treatment, as the emergence of MI has inflicted considerable suffering among residents. Early warning systems are crucial for managing epidemics promptly, especially given the escalating disease burden in older populations and the complexities of assessing present and future demands. The primary objective of this study is to forecast MI incidence early using a deep learning model, predicting the prevalence of heart attacks in patients. Our approach involves a novel dataset collected from daily heart attack incidence Time Series Patient Data spanning January 1, 2020, to December 31, 2021, in the Chittagong Metropolitan Area. Initially, we applied various advanced models, including Autoregressive Integrated Moving Average (ARIMA), Error-Trend-Seasonal (ETS), Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal (TBATS), and Long Short Time Memory (LSTM). To enhance prediction accuracy, we propose a novel Myocardial Sequence Classification (MSC)-LSTM method tailored to forecast heart attack occurrences in patients using the newly collected data from the Chittagong Metropolitan Area. Comprehensive results comparisons reveal that the novel MSC-LSTM model outperforms other applied models in terms of performance, achieving a minimum Mean Percentage Error (MPE) score of 1.6477. This research aids in predicting the likely future course of heart attack occurrences, facilitating the development of thorough plans for future preventive measures. The forecasting of MI occurrences contributes to effective resource allocation, capacity planning, policy creation, budgeting, public awareness, research identification, quality improvement, and disaster preparedness.


Asunto(s)
Aprendizaje Profundo , Predicción , Infarto del Miocardio , Humanos , Infarto del Miocardio/epidemiología , Infarto del Miocardio/diagnóstico , Predicción/métodos , Incidencia , Estaciones del Año
3.
Environ Monit Assess ; 196(3): 302, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401024

RESUMEN

Digital image processing has witnessed a significant transformation, owing to the adoption of deep learning (DL) algorithms, which have proven to be vastly superior to conventional methods for crop detection. These DL algorithms have recently found successful applications across various domains, translating input data, such as images of afflicted plants, into valuable insights, like the identification of specific crop diseases. This innovation has spurred the development of cutting-edge techniques for early detection and diagnosis of crop diseases, leveraging tools such as convolutional neural networks (CNN), K-nearest neighbour (KNN), support vector machines (SVM), and artificial neural networks (ANN). This paper offers an all-encompassing exploration of the contemporary literature on methods for diagnosing, categorizing, and gauging the severity of crop diseases. The review examines the performance analysis of the latest machine learning (ML) and DL techniques outlined in these studies. It also scrutinizes the methodologies and datasets and outlines the prevalent recommendations and identified gaps within different research investigations. As a conclusion, the review offers insights into potential solutions and outlines the direction for future research in this field. The review underscores that while most studies have concentrated on traditional ML algorithms and CNN, there has been a noticeable dearth of focus on emerging DL algorithms like capsule neural networks and vision transformers. Furthermore, it sheds light on the fact that several datasets employed for training and evaluating DL models have been tailored to suit specific crop types, emphasizing the pressing need for a comprehensive and expansive image dataset encompassing a wider array of crop varieties. Moreover, the survey draws attention to the prevailing trend where the majority of research endeavours have concentrated on individual plant diseases, ML, or DL algorithms. In light of this, it advocates for the development of a unified framework that harnesses an ensemble of ML and DL algorithms to address the complexities of multiple plant diseases effectively.


Asunto(s)
Aprendizaje Profundo , Monitoreo del Ambiente , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático
4.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36850784

RESUMEN

Recently, the concept of the internet of things and its services has emerged with cloud computing. Cloud computing is a modern technology for dealing with big data to perform specified operations. The cloud addresses the problem of selecting and placing iterations across nodes in fog computing. Previous studies focused on original swarm intelligent and mathematical models; thus, we proposed a novel hybrid method based on two modern metaheuristic algorithms. This paper combined the Aquila Optimizer (AO) algorithm with the elephant herding optimization (EHO) for solving dynamic data replication problems in the fog computing environment. In the proposed method, we present a set of objectives that determine data transmission paths, choose the least cost path, reduce network bottlenecks, bandwidth, balance, and speed data transfer rates between nodes in cloud computing. A hybrid method, AOEHO, addresses the optimal and least expensive path, determines the best replication via cloud computing, and determines optimal nodes to select and place data replication near users. Moreover, we developed a multi-objective optimization based on the proposed AOEHO to decrease the bandwidth and enhance load balancing and cloud throughput. The proposed method is evaluated based on data replication using seven criteria. These criteria are data replication access, distance, costs, availability, SBER, popularity, and the Floyd algorithm. The experimental results show the superiority of the proposed AOEHO strategy performance over other algorithms, such as bandwidth, distance, load balancing, data transmission, and least cost path.

5.
J Med Biol Eng ; 43(2): 135-146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077696

RESUMEN

Purpose: Coronavirus 2019 (COVID-19) had major social, medical, and economic impacts globally. The study aims to develop a deep-learning model that can predict the severity of COVID-19 in patients based on CT images of their lungs. Methods: COVID-19 causes lung infections, and qRT-PCR is an essential tool used to detect virus infection. However, qRT-PCR is inadequate for detecting the severity of the disease and the extent to which it affects the lung. In this paper, we aim to determine the severity level of COVID-19 by studying lung CT scans of people diagnosed with the virus. Results: We used images from King Abdullah University Hospital in Jordan; we collected our dataset from 875 cases with 2205 CT images. A radiologist classified the images into four levels of severity: normal, mild, moderate, and severe. We used various deep-learning algorithms to predict the severity of lung diseases. The results show that the best deep-learning algorithm used is Resnet101, with an accuracy score of 99.5% and a data loss rate of 0.03%. Conclusion: The proposed model assisted in diagnosing and treating COVID-19 patients and helped improve patient outcomes.

6.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009891

RESUMEN

Reaching a flat network is the main target of future evolved packet core for the 5G mobile networks. The current 4th generation core network is centralized architecture, including Serving Gateway and Packet-data-network Gateway; both act as mobility and IP anchors. However, this architecture suffers from non-optimal routing and intolerable latency due to many control messages. To overcome these challenges, we propose a partially distributed architecture for 5th generation networks, such that the control plane and data plane are fully decoupled. The proposed architecture is based on including a node Multi-session Gateway to merge the mobility and IP anchor gateway functionality. This work presented a control entity with the full implementation of the control plane to achieve an optimal flat network architecture. The impact of the proposed evolved packet Core structure in attachment, data delivery, and mobility procedures is validated through simulation. Several experiments were carried out by using NS-3 simulation to validate the results of the proposed architecture. The Numerical analysis is evaluated in terms of total transmission delay, inter and intra handover delay, queuing delay, and total attachment time. Simulation results show that the proposed architecture performance-enhanced end-to-end latency over the legacy architecture.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Simulación por Computador , Programas Informáticos
7.
Entropy (Basel) ; 24(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421530

RESUMEN

The forecasting and prediction of crude oil are necessary in enabling governments to compile their economic plans. Artificial neural networks (ANN) have been widely used in different forecasting and prediction applications, including in the oil industry. The dendritic neural regression (DNR) model is an ANNs that has showed promising performance in time-series prediction. The DNR has the capability to deal with the nonlinear characteristics of historical data for time-series forecasting applications. However, it faces certain limitations in training and configuring its parameters. To this end, we utilized the power of metaheuristic optimization algorithms to boost the training process and optimize its parameters. A comprehensive evaluation is presented in this study with six MH optimization algorithms used for this purpose: whale optimization algorithm (WOA), particle swarm optimization algorithm (PSO), genetic algorithm (GA), sine-cosine algorithm (SCA), differential evolution (DE), and harmony search algorithm (HS). We used oil-production datasets for historical records of crude oil production from seven real-world oilfields (from Tahe oilfields, in China), provided by a local partner. Extensive evaluation experiments were carried out using several performance measures to study the validity of the DNR with MH optimization methods in time-series applications. The findings of this study have confirmed the applicability of MH with DNR. The applications of MH methods improved the performance of the original DNR. We also concluded that the PSO and WOA achieved the best performance compared with other methods.

8.
Appl Soft Comput ; 101: 107052, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33519325

RESUMEN

Classification of COVID-19 X-ray images to determine the patient's health condition is a critical issue these days since X-ray images provide more information about the patient's lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task. The classification process includes three classes, called normal patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS variants have been validated with eighteen UCI data-sets as the first series of experiments. For the second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed approach results have been compared with well-regarded optimization algorithms. The outcomes assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19 data-sets with remarkable improvements in the convergence curves, especially with applying Weibull distribution instead of Lévy flight.

9.
Entropy (Basel) ; 23(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946006

RESUMEN

Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.

10.
Entropy (Basel) ; 23(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34945943

RESUMEN

Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO's issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.

11.
Entropy (Basel) ; 23(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34573818

RESUMEN

With the widespread use of intelligent information systems, a massive amount of data with lots of irrelevant, noisy, and redundant features are collected; moreover, many features should be handled. Therefore, introducing an efficient feature selection (FS) approach becomes a challenging aim. In the recent decade, various artificial methods and swarm models inspired by biological and social systems have been proposed to solve different problems, including FS. Thus, in this paper, an innovative approach is proposed based on a hybrid integration between two intelligent algorithms, Electric fish optimization (EFO) and the arithmetic optimization algorithm (AOA), to boost the exploration stage of EFO to process the high dimensional FS problems with a remarkable convergence speed. The proposed EFOAOA is examined with eighteen datasets for different real-life applications. The EFOAOA results are compared with a set of recent state-of-the-art optimizers using a set of statistical metrics and the Friedman test. The comparisons show the positive impact of integrating the AOA operator in the EFO, as the proposed EFOAOA can identify the most important features with high accuracy and efficiency. Compared to the other FS methods whereas, it got the lowest features number and the highest accuracy in 50% and 67% of the datasets, respectively.

12.
Appl Intell (Dordr) ; 51(4): 2353-2376, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764558

RESUMEN

The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA's applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper.

13.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353003

RESUMEN

In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.

14.
Heliyon ; 10(7): e28147, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689992

RESUMEN

Deep Convolutional Neural Networks (DCNNs) have shown remarkable success in image classification tasks, but optimizing their hyperparameters can be challenging due to their complex structure. This paper develops the Adaptive Habitat Biogeography-Based Optimizer (AHBBO) for tuning the hyperparameters of DCNNs in image classification tasks. In complicated optimization problems, the BBO suffers from premature convergence and insufficient exploration. In this regard, an adaptable habitat is presented as a solution to these problems; it would permit variable habitat sizes and regulated mutation. Better optimization performance and a greater chance of finding high-quality solutions across a wide range of problem domains are the results of this modification's increased exploration and population diversity. AHBBO is tested on 53 benchmark optimization functions and demonstrates its effectiveness in improving initial stochastic solutions and converging faster to the optimum. Furthermore, DCNN-AHBBO is compared to 23 well-known image classifiers on nine challenging image classification problems and shows superior performance in reducing the error rate by up to 5.14%. Our proposed algorithm outperforms 13 benchmark classifiers in 87 out of 95 evaluations, providing a high-performance and reliable solution for optimizing DNNs in image classification tasks. This research contributes to the field of deep learning by proposing a new optimization algorithm that can improve the efficiency of deep neural networks in image classification.

15.
Heliyon ; 10(12): e32911, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022051

RESUMEN

Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO.

16.
Sci Rep ; 14(1): 8660, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622177

RESUMEN

Agriculture plays a pivotal role in the economic development of a nation, but, growth of agriculture is affected badly by the many factors one such is plant diseases. Early stage prediction of these disease is crucial role for global health and even for game changers the farmer's life. Recently, adoption of modern technologies, such as the Internet of Things (IoT) and deep learning concepts has given the brighter light of inventing the intelligent machines to predict the plant diseases before it is deep-rooted in the farmlands. But, precise prediction of plant diseases is a complex job due to the presence of noise, changes in the intensities, similar resemblance between healthy and diseased plants and finally dimension of plant leaves. To tackle this problem, high-accurate and intelligently tuned deep learning algorithms are mandatorily needed. In this research article, novel ensemble of Swin transformers and residual convolutional networks are proposed. Swin transformers (ST) are hierarchical structures with linearly scalable computing complexity that offer performance and flexibility at various scales. In order to extract the best deep key-point features, the Swin transformers and residual networks has been combined, followed by Feed forward networks for better prediction. Extended experimentation is conducted using Plant Village Kaggle datasets, and performance metrics, including accuracy, precision, recall, specificity, and F1-rating, are evaluated and analysed. Existing structure along with FCN-8s, CED-Net, SegNet, DeepLabv3, Dense nets, and Central nets are used to demonstrate the superiority of the suggested version. The experimental results show that in terms of accuracy, precision, recall, and F1-rating, the introduced version shown better performances than the other state-of-art hybrid learning models.


Asunto(s)
Recuerdo Mental , Reconocimiento en Psicología , Agricultura , Algoritmos , Enfermedades de las Plantas
17.
Data Brief ; 54: 110539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882192

RESUMEN

The study presents a segmented dataset comprising dental periapical X-ray images from both healthy and diseased patients. The ability to differentiate between normal and abnormal dental periapical X-rays is pivotal for accurate diagnosis of dental pathology. These X-rays contain crucial information, offering in- sights into the physiological and pathological conditions of teeth and surrounding structures. The dataset outlined in this article encompasses dental periapical X-ray images obtained during routine examinations and treatment procedures of patients at the oral and dental health department of a local government hos- pital in North Jordan. Comprising a total of 929 high-quality X-ray images, the dataset includes subjects of varying ages with a spectrum of dental and pulpal diseases, bone loss, periapical diseases, and other abnormalities. Employing an advanced image segmentation approach, the collected dataset is categorized into healthy and diseased dental patients. This labelled dataset serves as a foundation for the development of an automated system capable of detecting dental pathologies, including caries and pulpal diseases, and distinguishing between normal and abnormal cases. Notably, recent advancements in deep learning artificial intelligence have significantly contributed to the creation of advanced dental models for diverse applications. This technology has demonstrated remarkable accuracy in the development of diagnostic and detection tools for various dental problems.

18.
Tissue Cell ; 88: 102380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615643

RESUMEN

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Regeneración , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración/fisiología , Animales , Condrogénesis/fisiología , Cartílago/metabolismo , Cartílago/fisiología , Diferenciación Celular , Condrocitos/metabolismo , Condrocitos/citología , Transducción de Señal
19.
Heliyon ; 10(11): e31629, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845929

RESUMEN

This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The optimization process of GCRA is inspired by the intelligent foraging behaviors of greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails as they forage through reeds and grass. Such trails would subsequently lead to food and water sources and shelter. The exploration phase is achieved when they leave the different shelters scattered around their territory to forage and leave trails. It is presumed that the alpha male maintains knowledge about these routes, and as a result, other rats modify their location according to this information. Also, the males are aware of the breeding season and separate themselves from the group. The assumption is that once the group is separated during this season, the foraging activities are concentrated within areas of abundant food sources, which aids the exploitation. Hence, the smart foraging paths and behaviors during the mating season are mathematically represented to realize the design of the GCR algorithm and carry out the optimization tasks. The performance of GCRA is tested using twenty-two classical benchmark functions, ten CEC 2020 complex functions, and the CEC 2011 real-world continuous benchmark problems. To further test the performance of the proposed algorithm, six classic problems in the engineering domain were used. Furthermore, a thorough analysis of computational and convergence results is presented to shed light on the efficacy and stability levels of GCRA. The statistical significance of the results is compared with ten state-of-the-art algorithms using Friedman's and Wilcoxon's signed rank tests. These findings show that GCRA produced optimal or nearly optimal solutions and evaded the trap of local minima, distinguishing it from the rival optimization algorithms employed to tackle similar problems. The GCRA optimizer source code is publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra.

20.
Sci Rep ; 14(1): 1496, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233479

RESUMEN

Plant image analysis is a significant tool for plant phenotyping. Image analysis has been used to assess plant trails, forecast plant growth, and offer geographical information about images. The area segmentation and counting of the leaf is a major component of plant phenotyping, which can be used to measure the growth of the plant. Therefore, this paper developed a convolutional neural network-based leaf counting model called LC-Net. The original plant image and segmented leaf parts are fed as input because the segmented leaf part provides additional information to the proposed LC-Net. The well-known SegNet model has been utilised to obtain segmented leaf parts because it outperforms four other popular Convolutional Neural Network (CNN) models, namely DeepLab V3+, Fast FCN with Pyramid Scene Parsing (PSP), U-Net, and Refine Net. The proposed LC-Net is compared to the other recent CNN-based leaf counting models over the combined Computer Vision Problems in Plant Phenotyping (CVPPP) and KOMATSUNA datasets. The subjective and numerical evaluations of the experimental results demonstrate the superiority of the LC-Net to other tested models.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Geografía , Desarrollo de la Planta , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA