Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur J Clin Microbiol Infect Dis ; 43(1): 203-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985550

RESUMEN

We present a case of skin lesion caused by nontoxigenic Corynebacterium diphtheriae. Genomic taxonomy analyses corroborated the preliminary identification provided by mass spectrometry. The strain showed a susceptible phenotype with increased exposure to penicillin, the first drug of choice for the treatment. An empty type 1 class integron carrying only the sul1 gene, which encodes sulfonamide resistance, was found flanked by transposases. Virulence factors involved in adherence and iron uptake, as well as the CRISPR-Cas system, were predicted. MLST analysis revealed the ST-681, previously reported in French Guiana, a European territory.


Asunto(s)
Corynebacterium diphtheriae , Humanos , Corynebacterium diphtheriae/genética , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , Genómica , Hierro
2.
Avian Pathol ; : 1-11, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38662518

RESUMEN

RESEARCH HIGHLIGHTS: RSS causes dysbiosis of the gut microbiota of the ilea of chicks.A difference was found in gut microbiota between chicks with or without RSS.Candidatus Arthromitus was predominant in chicks with RSS.Clostridium sensu stricto 1 was strictly associated with chicks with RSS.

3.
Adv Exp Med Biol ; 1443: 87-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409417

RESUMEN

Microbiotas are an adaptable component of ecosystems, including human ecology. Microorganisms influence the chemistry of their specialized niche, such as the human gut, as well as the chemistry of distant surroundings, such as other areas of the body. Metabolomics based on mass spectrometry (MS) is one of the primary methods for detecting and identifying small compounds generated by the human microbiota, as well as understanding the functional significance of these microbial metabolites. This book chapter gives basic knowledge on the kinds of untargeted mass spectrometry as well as the data types that may be generated in the context of microbiome study. While data analysis remains a barrier, the emphasis is on data analysis methodologies and integrative analysis, particularly the integration of microbiome sequencing data. Mass spectrometry (MS)-based techniques have resurrected culture methods for studying the human gut microbiota, filling in the gaps left by high-throughput sequencing methods in terms of culturing minor populations.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
4.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008714

RESUMEN

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Asunto(s)
Proteínas de Escherichia coli , Mucositis , Probióticos , Ratones , Humanos , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamación , Probióticos/uso terapéutico
5.
Arch Microbiol ; 205(5): 180, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031284

RESUMEN

C-di-GMP is a bacterial second messenger with central role in biofilm formation. Spirochete bacteria from Leptospira genus present a wide diversity, with species of medical importance and environmental species, named as saprophytic. Leptospira form biofilms in the rat's reservoir kidneys and in the environment. Here, we performed genomic analyses to identify enzymatic and effector c-di-GMP proteins in the saprophytic biofilm-forming species Leptospira biflexa serovar Patoc. We identified 40 proteins through local alignments. Amongst them, 16 proteins are potentially functional diguanylate cyclases, phosphodiesterases, or hybrid proteins. We also identified nine effectors, including PilZ proteins. Enrichment analyses suggested that c-di-GMP interacts with cAMP signaling system, CsrA system, and flagella assembly regulation during biofilm development of L. biflexa. Finally, we identified eight proteins in the pathogen Leptospira interrogans serovar Copenhageni that share high similarity with L. biflexa c-di-GMP-related proteins. This work revealed proteins related to c-di-GMP turnover and cellular response in Leptospira and their potential roles during biofilm development.


Asunto(s)
Proteínas de Escherichia coli , Leptospira , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Spirochaetales/metabolismo , Proteínas de Escherichia coli/genética , Bacterias/metabolismo , Leptospira/genética , Leptospira/metabolismo , Genómica , Biopelículas , Regulación Bacteriana de la Expresión Génica
6.
Microb Ecol ; 86(4): 2488-2501, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326636

RESUMEN

Biofilms are complex microecosystems with valuable ecological roles that can shelter a variety of microorganisms. Spirochetes from the genus Leptospira have been observed to form biofilms in vitro, in rural environments, and in the kidneys of reservoir rats. The genus Leptospira is composed of pathogenic and non-pathogenic species, and the description of new species is ongoing due to the advent of whole genome sequencing. Leptospires have increasingly been isolated from water and soil samples. To investigate the presence of Leptospira in environmental biofilms, we collected three distinct samples of biofilms formed in an urban setting with poor sanitation: Pau da Lima, in Salvador, Bahia, Brazil. All biofilm samples were negative for the presence of pathogenic leptospires via conventional PCR, but cultures containing saprophytic Leptospira were identified. Whole genomes were generated and analyzed for twenty isolates obtained from these biofilms. For species identification, we used digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analysis. The obtained isolates were classified into seven presumptive species from the saprophytic S1 clade. ANI and dDDH analysis suggest that three of those seven species were new. Classical phenotypic tests confirmed the novel isolated bacteria as saprophytic Leptospira. The isolates presented typical morphology and ultrastructure according to scanning electron microscopy and formed biofilms under in vitro conditions. Our data indicate that a diversity of saprophytic Leptospira species survive in the Brazilian poorly sanitized urban environment, in a biofilm lifestyle. We believe our results contribute to a better understanding of Leptospira biology and ecology, considering biofilms as natural environmental reservoirs for leptospires.


Asunto(s)
Leptospira , Leptospirosis , Animales , Ratas , Leptospira/genética , Leptospirosis/microbiología , Brasil , Biopelículas , ADN
7.
Phytopathology ; 113(7): 1360-1364, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36703497

RESUMEN

Cashew (Anacardium occidentale) angular leaf spot is caused by pigmented and non-pigmented strains of Xanthomonas citri pv. anacardii, which have been isolated from infected plants in Brazil. The disease symptoms can be observed in leaves, stems, and fruits. Given that infection in young fruits results in fruits unsuitable for commercialization, angular leaf spot represents a serious threat to the cashew crop in Brazil. Here, we report the genomic sequencing of seven pigmented strains of X. citri pv. anacardii, obtained from the leaves of cashew trees from São Paulo state, Brazil, in 2009. The construction of the libraries was carried out according to the manufacturer, and whole-genome sequencing was performed using the Illumina HiSeq 2500 platform. Genome size, number of coding sequences, largest contig length, and N50 ranged from 4,996,984 to 5,003,485 bp, 4,621 to 4,643 bp, 212,513 to 362,232 bp, and 113,582 to 141,003 bp, respectively. GC content and RNA numbers were 64.68% and 54, respectively, for all strains. ANIm and dDDH analyses showed values above 99.5 and 92.1% among these strains and the non-pigmented pathotype strain of X. citri pv. anacardii (IBSBF2579PT). A maximum likelihood tree built with 2,708 core genes grouped all X. citri pv. anacardii strains in the same clade, with a 100% bootstrap. These resources will contribute in a relevant way to help understand the ecological, taxonomic, evolutionary, pathogenicity, and virulence aspects of X. citri pv. anacardii, which will be useful for the study and development of techniques for managing cashew angular leaf spot.


Asunto(s)
Anacardium , Xanthomonas , Enfermedades de las Plantas , Brasil
8.
Indian J Med Res ; 157(4): 293-303, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102510

RESUMEN

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.


Asunto(s)
COVID-19 , Ingredientes Alimentarios , Humanos , Nutrigenómica , Dióxido de Carbono , Lipopolisacáridos , Pandemias , Síndrome de Liberación de Citoquinas , Ácido Palmítico , SARS-CoV-2 , Dieta/métodos , Conducta Alimentaria , Zinc , , Hierro , Triglicéridos
9.
Parasitol Res ; 123(1): 21, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072845

RESUMEN

There are few reports of Trypanosoma in snakes, as well as little information about its pathogenicity in these animals. Thus, the present study aimed to characterize Trypanosoma found in Boa constrictor snakes, to verify the influence of the parasitism on hematological and clinical biochemistry parameters, and to perform a phylogenetic study of the isolates. Blood samples from sixty-one boas were analyzed for the presence of trypanosomatids and by hematological and clinical biochemistry assays. The flagellates that were found in this analysis were used for cell culture, morphometry, and molecular analysis. Later, molecular typing phylogenetic studies were performed. Nine positive animals (14.75%) were identified by microscopy analysis. The hematological results showed that parasitized animals presented significantly lower levels of packed cell volume, hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin. In the leukogram, eosinophils and heterophils counts were higher in parasitized animals. Considering the molecular analyses, the isolates presented a higher identity of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the 18S small subunit ribosomal RNA (SSU rRNA) gene fragments with Trypanosoma serpentis. The phylogenetic tree, using the GAPDH, clustered all isolates with T. serpentis and Trypanosoma cascavelli. This is the first description of T. serpentis parasitizing boas and of the clinical changes caused by trypanosomatid infection in snakes.


Asunto(s)
Boidae , Trypanosoma , Animales , Boidae/genética , Filogenia , ADN Ribosómico/genética , ARN Ribosómico 18S/genética , Serpientes , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , ADN Protozoario
10.
An Acad Bras Cienc ; 95(suppl 2): e20230617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055447

RESUMEN

Sexually Transmitted Infections (STIs) are a public health burden rising in developed and developing nations. The World Health Organization estimates nearly 374 million new cases of curable STIs yearly. Global efforts to control their spread have been insufficient in fulfilling their objective. As there is no vaccine for many of these infections, these efforts are focused on education and condom distribution. The development of vaccines for STIs is vital for successfully halting their spread. The field of immunoinformatics is a powerful new tool for vaccine development, allowing for the identification of vaccine candidates within a bacterium's genome and allowing for the design of new genome-based vaccine peptides. The goal of this review was to evaluate the usage of immunoinformatics in research focused on non-viral STIs, identifying fields where research efforts are concentrated. Here we describe gaps in applying these techniques, as in the case of Treponema pallidum and Trichomonas vaginalis.


Asunto(s)
Enfermedades de Transmisión Sexual , Trichomonas vaginalis , Vacunas , Humanos , Vacunología , Enfermedades de Transmisión Sexual/prevención & control
11.
J Med Virol ; 93(12): 6782-6787, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34241897

RESUMEN

Sao Paulo State, currently experiences a second COVID-19 wave overwhelming the healthcare system. Due to the paucity of SARS-CoV-2 complete genome sequencing, we established a Network for Pandemic Alert of Emerging SARS-CoV-2 Variants to rapidly understand and monitor the spread of SARS-CoV-2 variants into the state. Through analysis of 210 SARS-CoV-2 complete genomes obtained from the largest regional health departments we identified cocirculation of multiple SARS-CoV-2 lineages such as B.1.1 (0.5%), B.1.1.28 (23.2%), B.1.1.7 (alpha variant, 6.2%), B.1.566 (1.4%), B.1.544 (0.5%), C.37 (0.5%) P.1 (gamma variant, 66.2%), and P.2 (zeta variant, 1.0%). Our analysis allowed also the detection, for the first time in Brazil, the South African B.1.351 (beta) variant of concern, B.1.351 (501Y.V2) (0.5%), characterized by the following mutations: ORF1ab: T265I, R724K, S1612L, K1655N, K3353R, SGF 3675_F3677del, P4715L, E5585D; spike: D80A, D215G, L242_L244del, A262D, K417N, E484K, N501Y, D614G, A701V, C1247F; ORF3a: Q57H, S171L, E: P71L; ORF7b: Y10F, N: T205I; ORF14: L52F. The most recent common ancestor of the identified strain was inferred to be mid-October to late December 2020. Our analysis demonstrated the P.1 lineage predominance and allowed the early detection of the South African strain for the first time in Brazil. We highlight the importance of SARS-CoV-2 active monitoring to ensure the rapid detection of potential variants for pandemic control and vaccination strategies. Highlights Identification of B.1.351 (beta) variant of concern in the Sao Paulo State. Dissemination of SARS-CoV-2 variants of concern and interest in the Sao Paulo State. Mutational Profile of the circulating variants of concern and interest.


Asunto(s)
SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Brasil , COVID-19/inmunología , COVID-19/virología , Genómica/métodos , Humanos , Mutación/genética , Mutación/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
12.
An Acad Bras Cienc ; 93(2): e20200945, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681877

RESUMEN

Bacterial vaginosis (BV) has been considered as dysbiosis state whose etiology is not fully understood. This condition affects a large number of women of reproductive age and its study has been highly relevant due to the growing association of BV with and gynecological and obstetric complications and diseases, in addition to a greater susceptibility to sexually transmitted diseases, including HIV. The vaginal microbiota composition presents high variability among different ethnic groups of women, although, generally, the prevalence of lactobacilli species has been reported. Several studies suggest they may play a protective role, especially Lactobacillus crispatus whose population is typically present in low proportions in women with BV. This review article describes the contributions and limitations of genomic approaches in elucidating protective characteristics and mechanisms associated with colonization and persistence of lactobacilli strains. Although some genetic features were associated with resilience of L. crispatus during BV, furher studies are required to uncover their functions.


Asunto(s)
Microbiota , Vaginosis Bacteriana , Femenino , Genómica , Humanos , Lactobacillus/genética , Microbiota/genética , Vaginosis Bacteriana/genética
13.
World J Microbiol Biotechnol ; 37(12): 206, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34708327

RESUMEN

Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.


Asunto(s)
Biotecnología/métodos , Endófitos , Microbiota , Plantas/microbiología , Inoculantes Agrícolas , Agricultura , Biología Computacional , Humanos , Metagenómica/métodos , Raíces de Plantas/microbiología , Suelo , Microbiología del Suelo
14.
Int J Med Microbiol ; 310(4): 151417, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32276876

RESUMEN

Pasteurella multocida is an important veterinary pathogen able to infect a wide range of animals in a broad spectrum of diseases. P. multocida is a complex microorganism in relation to its genomic flexibility, host adaptation and pathogenesis. Epidemiological analysis based on multilocus sequence typing, serotyping, genotyping, association with virulence genes and single nucleotide polymorphisms (SNPs), enables assessment of intraspecies diversity, phylogenetic and strain-specific relationships associated with host predilection or disease. A high number of sequenced genomes provides us a more accurate genomic and epidemiological interpretation to determine whether certain lineages can infect a host or produce disease. Comparative genomic analysis and pan-genomic approaches have revealed a flexible genome for hosting mobile genetic elements (MGEs) and therefore significant variation in gene content. Moreover, it was possible to find lineage-specific MGEs from the same niche, showing acquisition probably due to an evolutionary convergence event or to a genetic group with infective capacity. Furthermore, diversification selection analysis exhibits proteins exposed on the surface subject to selection pressures with an interstrain heterogeneity related to their ability to adapt. This article is the first review describing the genomic relationship to elucidate the diversity and evolution of P. multocida.


Asunto(s)
Variación Genética , Genómica , Infecciones por Pasteurella/patología , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/genética , Adaptación Fisiológica , Animales , Evolución Molecular , Genoma Bacteriano , Humanos , Secuencias Repetitivas Esparcidas , Infecciones por Pasteurella/transmisión , Filogenia , Polimorfismo de Nucleótido Simple , Aves de Corral/microbiología , Virulencia/genética
15.
BMC Genomics ; 17(1): 1007, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931189

RESUMEN

BACKGROUND: Propionibacterium freudenreichii is an Actinobacterium widely used in the dairy industry as a ripening culture for Swiss-type cheeses, for vitamin B12 production and some strains display probiotic properties. It is reportedly a hardy bacterium, able to survive the cheese-making process and digestive stresses. RESULTS: During this study, P. freudenreichii CIRM-BIA 138 (alias ITG P9), which has a generation time of five hours in Yeast Extract Lactate medium at 30 °C under microaerophilic conditions, was incubated for 11 days (9 days after entry into stationary phase) in a culture medium, without any adjunct during the incubation. The carbon and free amino acids sources available in the medium, and the organic acids produced by the strain, were monitored throughout growth and survival. Although lactate (the preferred carbon source for P. freudenreichii) was exhausted three days after inoculation, the strain sustained a high population level of 9.3 log10 CFU/mL. Its physiological adaptation was investigated by RNA-seq analysis and revealed a complete disruption of metabolism at the entry into stationary phase as compared to exponential phase. CONCLUSIONS: P. freudenreichii adapts its metabolism during entry into stationary phase by down-regulating oxidative phosphorylation, glycolysis, and the Wood-Werkman cycle by exploiting new nitrogen (glutamate, glycine, alanine) sources, by down-regulating the transcription, translation and secretion of protein. Utilization of polyphosphates was suggested.


Asunto(s)
Adaptación Fisiológica , Propionibacterium freudenreichii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Medios de Cultivo/química , Regulación hacia Abajo , Glucólisis/genética , Concentración de Iones de Hidrógeno , Metaboloma , Fosforilación Oxidativa , Oxígeno/metabolismo , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/crecimiento & desarrollo , ARN Bacteriano/química , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , Análisis de Secuencia de ARN
16.
BMC Genomics ; 17: 315, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27129708

RESUMEN

BACKGROUND: Studies have detected mis-assemblies in genomes of the species Corynebacterium pseudotuberculosis. These new discover have been possible due to the evolution of the Next-Generation Sequencing platforms, which have provided sequencing with accuracy and reduced costs. In addition, the improving of techniques for construction of high accuracy genomic maps, for example, Whole-genome mapping (WGM) (OpGen Inc), have allow high-resolution assembly that can detect large rearrangements. RESULTS: In this work, we present the resequencing of Corynebacterium pseudotuberculosis strain 1002 (Cp1002). Cp1002 was the first strain of this species sequenced in Brazil, and its genome has been used as model for several studies in silico of caseous lymphadenitis disease. The sequencing was performed using the platform Ion PGM and fragment library (200 bp kit). A restriction map was constructed, using the technique of WGM with the enzyme KpnI. After the new assembly process, using WGM as scaffolder, we detected a large inversion with size bigger than one-half of genome. A specific analysis using BLAST and NR database shows that the inversion occurs between two homology RNA ribosomal regions. CONCLUSION: In conclusion, the results showed by WGM could be used to detect mismatches in assemblies, providing genomic maps with high resolution and allow assemblies with more accuracy and completeness. The new assembly of C. pseudotuberculosis was deposited in GenBank under the accession no. CP012837.


Asunto(s)
Mapeo Cromosómico/métodos , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Genómica/métodos , Operón de ARNr/genética , ADN Bacteriano/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
17.
PeerJ ; 12: e16513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313017

RESUMEN

Background: Corynebacterium pseudotuberculosis is a zoonotic Gram-positive bacterial pathogen known to cause different diseases in many mammals, including lymph node abscesses in camels. Strains from biovars equi and ovis of C. pseudotuberculosis can infect camels. Comparative genomics could help to identify features related to host adaptation, and currently strain Cp162 from biovar equi is the only one from camel with a sequenced genome. Methods: In this work, we compared the quality of three genome assemblies of strain Cp162 that used data from the DNA sequencing platforms SOLiD v3 Plus, IonTorrent PGM, and Illumina HiSeq 2500 with an optical map and investigate the unique features of this strain. For this purpose, we applied comparative genomic analysis on the different Cp162 genome assembly versions and included other 129 genomes from the same species. Results: Since the first version of the genome, there was an increase of 88 Kbp and 121 protein-coding sequences, a decrease of pseudogenes from 139 to 53, and two inversions and one rearrangement corrected. We identified 30 virulence genes, none associated to the camel host, and the genes rpob2 and rbpA predicted to confer resistance to rifampin. In comparison to 129 genomes of the same species, strain Cp162 has four genes exclusively present, two of them code transposases and two truncated proteins, and the three exclusively absent genes lysG, NUDIX domain protein, and Hypothetical protein. All 130 genomes had the rifampin resistance genes rpob2 and rbpA. Our results found no unique gene that could be associated with tropism to camel host, and further studies should include more genomes and genome-wide association studies testing for genes and SNPs.


Asunto(s)
Corynebacterium pseudotuberculosis , Animales , Ovinos/genética , Corynebacterium pseudotuberculosis/genética , Camelus/genética , Genoma Bacteriano/genética , Estudio de Asociación del Genoma Completo , Rifampin , Análisis de Secuencia de ADN
18.
Res Vet Sci ; 166: 105106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086217

RESUMEN

The clinical aspects and lineages involved in Extraintestinal pathogenic Escherichia coli (ExPEC) infections in dogs remain largely unknown. In this study, we investigated the antimicrobial resistance and molecular structures of ExPECs isolated from infected dogs in Brazil. Samples were obtained from dogs (n = 42) with suspected extraintestinal bacterial infections. Phylogroup B2 was predominant (65.1%). No association was observed between the site of infection, phylogroups, or virulence factors. Almost half of the isolates (44.2%) were MDR, and 20.9% were extended-spectrum ß-lactamase (ESBL)-positive. E. coli isolates that were resistant to fluoroquinolones (27.9%) were more likely to be MDR. The CTX-M-15 enzyme was predominant among the ESBL-producing strains, and seven sequence types were identified, including the high-risk clones ST44 and ST131. Single SNPs analysis confirmed the presence of two clonal transmissions. The present study showed a high frequency of ExPECs from phylogroup B2 infecting various sites and a high frequency of ESBL-producing strains that included STs frequently associated with human infection. This study also confirmed the nosocomial transmission of ESBL-producing E. coli, highlighting the need for further studies on the prevention and diagnosis of nosocomial infections in veterinary settings.


Asunto(s)
Enfermedades de los Perros , Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Perros , Humanos , Animales , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Hospitales Veterinarios , Brasil/epidemiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/microbiología
19.
Poult Sci ; 103(7): 103739, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678973

RESUMEN

The poultry industry faces significant challenges in controlling Salmonella contamination while reducing antibiotic use, particularly with the emergence of Salmonella Heidelberg (SH) strains posing risks to food safety and public health. Probiotics, notably lactic acid bacteria (LAB) and Saccharomyces boulardii (SB) offer promising alternatives for mitigating Salmonella colonization in broilers. Understanding the efficacy of probiotics in combating SH and their impact on gut health and metabolism is crucial for improving poultry production practices and ensuring food safety standards. This study aimed to assess the inhibitory effects of LAB and SB against SH both in vitro and in vivo broilers, while also investigating their impact on fecal metabolites and caecal microbiome composition. In vitro analysis demonstrated strong inhibition of SH by certain probiotic strains, such as Lactiplantibacillus plantarum (LP) and Lacticaseibacillus acidophilus (LA), while others like SB and Lactobacillus delbrueckii (LD) did not exhibit significant inhibition. In vivo testing revealed that broilers receiving probiotics had significantly lower SH concentrations in cecal content compared to the positive control (PC) at all ages, indicating a protective effect of probiotics against SH colonization. Metagenomic analysis of cecal-content microbiota identified predominant bacterial families and genera, highlighting changes in microbiota composition with age and probiotic supplementation. Additionally, fecal metabolomics profiling showed alterations in metabolite concentrations, suggesting reduced oxidative stress, intestinal inflammation, and improved gut health in probiotic-supplemented birds. These findings underscore the potential of probiotics to mitigate SH colonization and improve broiler health while reducing reliance on antibiotics.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Probióticos , Saccharomyces boulardii , Salmonelosis Animal , Animales , Pollos/fisiología , Probióticos/farmacología , Probióticos/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Saccharomyces boulardii/fisiología , Salmonella enterica/fisiología , Alimentación Animal/análisis , Lactobacillales/fisiología , Heces/microbiología , Heces/química , Dieta/veterinaria , Masculino
20.
J Fungi (Basel) ; 10(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38248954

RESUMEN

Histoplasmosis is a widespread systemic disease caused by Histoplasma capsulatum, prevalent in the Americas. Despite its significant morbidity and mortality rates, no vaccines are currently available. Previously, five vaccine targets and specific epitopes for H. capsulatum were identified. Immunoinformatics has emerged as a novel approach for determining the main immunogenic components of antigens through in silico methods. Therefore, we predicted the main helper and cytotoxic T lymphocytes and B-cell epitopes for these targets to create a potential multi-epitope vaccine known as HistoVAC-TSFM. A total of 38 epitopes were found: 23 common to CTL and B-cell responses, 11 linked to HTL and B cells, and 4 previously validated epitopes associated with the B subunit of cholera toxin, a potent adjuvant. In silico evaluations confirmed the stability, non-toxicity, non-allergenicity, and non-homology of these vaccines with the host. Notably, the vaccine exhibited the potential to trigger both innate and adaptive immune responses, likely involving the TLR4 pathway, as supported by 3D modeling and molecular docking. The designed HistoVAC-TSFM appears promising against Histoplasma, with the ability to induce important cytokines, such as IFN-γ, TNF-α, IL17, and IL6. Future studies could be carried out to test the vaccine's efficacy in in vivo models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA