RESUMEN
Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson's disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson's disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents.
Asunto(s)
Enfermedad de Parkinson , Extractos Vegetales , Semillas , Vicia faba , Vicia faba/química , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Antioxidantes/farmacología , Antioxidantes/química , Línea Celular Tumoral , Polifenoles/farmacología , Polifenoles/química , Levodopa/farmacologíaRESUMEN
L-Dopa, a bioactive compound naturally occurring in some Leguminosae plants, is the most effective symptomatic drug treatment for Parkinson's disease. During disease progression, fluctuations in L-DOPA plasma levels occur, causing motor complications. Sensing devices capable of rapidly monitoring drug levels would allow adjusting L-Dopa dosing, improving therapeutic outcomes. A novel amperometric biosensor for L-Dopa detection is described, based on tyrosinase co-crosslinked onto a graphene oxide layer produced through electrodeposition. Careful optimization of the enzyme immobilization procedure permitted to improve the long-term stability while substantially shortening and simplifying the biosensor fabrication. The effectiveness of the immobilization protocol combined with the enhanced performances of electrodeposited graphene oxide allowed to achieve high sensitivity, wide linear range, and a detection limit of 0.84 µM, suitable for L-Dopa detection within its therapeutic window. Interference from endogenous compounds, tested at concentrations levels typically found in drug-treated patients, was not significant. Ascorbic acid exhibited a tyrosinase inhibitory behavior and was therefore rejected from the enzymatic layer by casting an outer Nafion membrane. The proposed device was applied for L-Dopa detection in human plasma, showing good recoveries.
Asunto(s)
Técnicas Biosensibles , Grafito , Humanos , Levodopa , Monofenol Monooxigenasa , Técnicas Biosensibles/métodos , Técnicas ElectroquímicasRESUMEN
The chemical composition of wine samples comprises numerous bioactive compounds responsible for unique flavor and health-promoting properties. Thus, it's important to have a complete overview of the metabolic profile of new wine products in order to obtain peculiar information in terms of their phytochemical composition, quality, and traceability. To achieve this aim, in this work, a mass spectrometry-based phytochemical screening was performed on seven new wine products from Villa D'Agri in the Basilicata region (Italy), i.e., Aglianico Bianco, Plavina, Guisana, Giosana, Malvasia ad acino piccolo, Colata Murro and Santa Sofia. Ultra-high-resolution mass spectrometry data were processed into absorption mode FT-ICR mass spectra, in order to remove artifacts and achieve a higher resolution and lower levels of noise. Accurate mass-to-charge ratio (m/z) values were converted into putative elemental formulas. Therefore, 2D van Krevelen diagrams were used as a tool to obtain molecular formula maps useful to perform a rapid and more comprehensive analysis of the wine sample metabolome. The presence of important metabolite classes, i.e., fatty acid derivatives, amino acids and peptides, carbohydrates and phenolic derivatives, was assessed. Moreover, the comparison of obtained metabolomic maps revealed some differences among profiles, suggesting their employment as metabolic fingerprints. This study shed some light on the metabolic composition of seven new Italian wine varieties, improving their value in terms of related bioactive compound content. Moreover, different metabolomic fingerprints were obtained for each of them, suggesting the use of molecular maps as innovative tool to ascertain their unique metabolic profile.
Asunto(s)
Vino , Aminoácidos/análisis , Carbohidratos/análisis , Ácidos Grasos/análisis , Espectrometría de Masas , Metabolómica/métodos , Péptidos/análisis , Vino/análisisRESUMEN
L-Dopa (LD), a substance used medically in the treatment of Parkinson's disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.
Asunto(s)
Vicia faba , Cromatografía Líquida de Alta Presión/métodos , Vicia faba/química , Levodopa , MetanolRESUMEN
Recently, pharmaceutical research has been focused on the design of new antibacterial drugs with higher selectivity towards several strains. Major issues concern the possibility to obtain compounds with fewer side effects, at the same time effectively overcoming the problem of antimicrobial resistance. Several solutions include the synthesis of new pharmacophores starting from piperazine or morpholine core units. Mass spectrometry-based techniques offer important support for the structural characterization of newly synthesized compounds to design safer and more effective drugs for various medical conditions. Here, two new piperazine derivatives and four new morpholine derivatives were synthesized and structurally characterized through a combined approach of Fourier transform-ion cyclotron resonance (FT-ICR) and Linear Trap Quadrupole (LTQ) mass spectrometry. The support of both high-resolution and low-resolution mass spectrometric data namely accurate mass measurements, isotopic distribution and MSn spectra, was crucial to confirm the success of the synthesis. These compounds were further evaluated for inhibitory activity against a total of twenty-nine Gram-positive and Gram-negative bacteria to determine the action spectrum and the antimicrobial effectiveness. Results demonstrated compounds' antimicrobial activity against many tested bacterial species, providing an inhibitory effect linked to different chemical structure and suggesting that the new-synthesized derivatives could be considered as promising antimicrobial agents.
Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Morfolinas , Piperazinas , Morfolinas/farmacología , Morfolinas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/análisis , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana/métodos , Piperazinas/farmacología , Piperazinas/química , Bacterias Gramnegativas/efectos de los fármacos , Espectrometría de Masas/métodos , Bacterias Grampositivas/efectos de los fármacos , Relación Estructura-Actividad , Piperazina/farmacología , Piperazina/químicaRESUMEN
An analytical method based on ultrasound assisted extraction (UAE) and liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI/MS/MS) was validated and applied for determining L-dopa in four ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris L.), marked with the European label PGI (Protected Geographical Indication). The selectivity of the proposed method was ensured by the specific fragmentation of the analyte. Simple isocratic chromatographic conditions and mass spectrometric detection in multiple reaction monitoring (MRM) acquisition mode were used for sensitive quantification. The LC-ESI/MS/MS method was validated within a linear range of 0.001-5.000 µg/mL. Values of 0.4 and 1.1 ng/mL were obtained for the limits of detection and quantification, respectively. The repeatability, inter-day precision, and recovery values ranges were 0.6%-4.5%, 5.4%-9.9%, and 83%-93%, respectively. Fresh and dried beans, as well as pods, cultivated exclusively with organic methods avoiding any synthetic fertilizers and pesticides were analyzed showing an L-dopa content ranging from 0.020 ± 0.005 to 2.34 ± 0.05 µg/g dry weight.
Asunto(s)
Plaguicidas , Phaseolus , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Phaseolus/química , Levodopa , Cromatografía Líquida de Alta PresiónRESUMEN
Conventional petroleum-derived plastics represent a serious problem for global pollution because, when discarded in the environment, are believed to remain for hundreds of years. In order to reduce dependence on fossil resources, bioplastic materials are being proposed as safer alternatives. Bioplastics are bio-based and/or biodegradable materials, typically derived from renewable sources. Food waste as feedstock represents one of the recent applications in the research field of bioplastics production. To date, several food wastes have been used as raw materials for the production of bioplastics, including mostly fruit and vegetable wastes. The conversion of fruit and vegetable wastes into biomaterials could occur through simple or more complex processes. In some cases, biopolymers extracted from raw biomass are directly manufactured; on the other hand, the extracted biopolymers could be reinforced or used as reinforcing agents and/or natural fillers in order to obtain biocomposites. The present review covers available results on the application of methods used in the last 10 years for the design of biomaterials obtained from formulations made up with both fruits and vegetables by-products. Particular attention will be addressed to the waste pre-treatment, to the bioplastic formulation and to its processing, as well as to the mechanical and physical properties of the obtained materials.
RESUMEN
The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.
RESUMEN
Chronic wounds result from the failure of the normal wound healing process. Any delay during the tissue repair process could be defined as chronic wound healing, potentially having a highly detrimental impact on human health. To face this problem, in the last years, the use of different technologies alternative to therapeutic agents is gaining more attention. The Helix aspersa snail slime-based products are increasingly being used for skin injury, thanks to their ability to make tissue repair processes faster. To date, a comprehensive overview of pure snail slime metabolome is not available. Besides, Au nanoparticles (AuNPs) technology is spreading rapidly in the medical environment, and the search for AuNPs "green" synthetic routes that involve natural products as precursor agents is demanded, alongside with a deep comprehension of the kind of species that actively take part in synthesis and product stabilization. The aim of this work is to characterize the metabolic profile of a pure snail slime sample, by an untargeted high-resolution mass spectrometry-based analysis. In addition, insights on AuNPs synthesis and stabilization by the main components of pure snail slime used to induce the synthesis were obtained. The untargeted analysis provided a large list of important classes of metabolites, that is, fatty acid derivatives, amino acids and peptides, carbohydrates and polyphenolic compounds that could be appreciated in both samples of slime, with and without AuNPs. Moreover, a direct comparison of the obtained results suggests that mostly nitrogen and sulfur-bearing metabolites take part in the synthesis and stabilization of AuNPs.
Asunto(s)
Antiinfecciosos/química , Oro/química , Nanopartículas del Metal/química , Moco/química , Cicatrización de Heridas/efectos de los fármacos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Antiinfecciosos/farmacología , Carbohidratos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Tecnología Química Verde , Humanos , Metaboloma , Péptidos/química , Péptidos/metabolismo , Polifenoles/química , Polifenoles/metabolismo , Piel , Caracoles , Espectrometría de Masas en Tándem/métodosRESUMEN
Pistacia lentiscus shows a long range of biological activities, and it has been used in traditional medicine for treatment of various kinds of diseases. Moreover, related essential oil keeps important health-promoting properties. However, less is known about P. lentiscus hydrosol, a main by-product of essential oil production, usually used for steam distillation itself or discarded. In this work, by using ultra-high-resolution ESI(+)-FT-ICR mass spectrometry, a direct identification of four main classes of metabolites of P. lentiscus hydrosol (i.e., terpenes, amino acids, peptides, and condensed heterocycles) was obtained. Remarkably, P. lentiscus hydrosol exhibited an anti-inflammatory activity by suppressing the secretion of IL-1ß, IL-6, and TNF-α proinflammatory cytokines in lipopolysaccharide- (LPS-) activated primary human monocytes. In LPS-triggered U937 cells, it inhibited NF-κB, a key transcription factor in inflammatory cascade, regulating the expression of both the mitochondrial citrate carrier and the ATP citrate lyase genes. These two main components of the citrate pathway were downregulated by P. lentiscus hydrosol. Therefore, the levels of ROS, NO, and PGE2, the inflammatory mediators downstream the citrate pathway, were reduced. Results shed light on metabolic profile and anti-inflammatory properties of P. lentiscus hydrosol, suggesting its potential as a therapeutic agent.