Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10124, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349488

RESUMEN

We present an approach (knowledge-and-data-driven, KDD, modeling) that allows us to get closer to understanding the processes that affect the dynamics of plankton communities. This approach, based on the use of time series obtained as a result of ecosystem monitoring, combines the key features of both the knowledge-driven modeling (mechanistic models) and data-driven (DD) modeling. Using a KDD model, we reveal the phytoplankton growth-rate fluctuations in the ecosystem of the Naroch Lakes and determine the degree of phase synchronization between fluctuations in the phytoplankton growth rate and temperature variations. More specifically, we estimate a numerical value of the phase locking index (PLI), which allows us to assess how temperature fluctuations affect the dynamics of phytoplankton growth rates. Since, within the framework of KDD modeling, we directly include the time series obtained as a result of field measurements in the model equations, the dynamics of the phytoplankton growth rate obtained from the KDD model reflect the behavior of the lake ecosystem as a whole, and PLI can be considered as a holistic parameter.


Asunto(s)
Ecosistema , Fitoplancton , Fitoplancton/fisiología , Temperatura , Plancton/fisiología , Lagos
2.
Sci Rep ; 12(1): 11979, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831352

RESUMEN

The ecosystem of the Naroch Lakes (Belarus) includes three water bodies, Lake Batorino, Lake Myastro and Lake Naroch. These lakes have a common catchment area. At the end of the 80 s, the ecosystem of the Naroch Lakes underwent a transformation, during which the nutrient load on the catchment area decreased, and the concentration of phosphorus as a limiting factor in these water bodies decreased significantly. At the same time, the Naroch Lakes were exposed to zebra mussel (Dreissena polymorpha Pallas) invasion. In the mid-90 s, the biological and hydrochemical characteristics of the ecosystem of the Naroch Lakes stabilized. We show here that complex processes associated with the transformation of the lake ecosystem and affecting both trophic interactions in the Naroch Lakes and the influence of environmental factors on them can be represented using a single parameter, the phase-locking index, PLI. In this case, a statistically significant numerical value of PLI characterizes the phase synchronization of two processes, oscillations of the concentration of total phosphorus, TP, and oscillations of the concentration of chlorophyll, Chl. We show that the phase synchronization of these processes occurs only after the stabilization of the ecosystem of the Naroch Lakes. In the period preceding the transformation of the lake ecosystem, there was no synchronization. Numerical evaluation of PLI as a holistic parameter allows us to characterize the transformation of the lake ecosystem as a whole without resorting to study of complex interactions of various factors involved in this transformation.


Asunto(s)
Dreissena , Lagos , Animales , Clorofila/análisis , Ecosistema , Monitoreo del Ambiente , Eutrofización , Lagos/química , Nitrógeno , Fósforo/análisis , Agua
3.
Sci Data ; 8(1): 200, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349102

RESUMEN

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

4.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239702

RESUMEN

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA