Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Oecologia ; 72(4): 487-501, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28312509

RESUMEN

Long-term growth patterns of red spruce (Picea rubens Sarg.) were analyzed from increment cores collected from over 1000 trees at 48 sites in the eastern United States. Principal objectives were the evaluation of the distribution, timing, and uniqueness of observed patterns of decreasing radial growth during the past 25 years and the examination of stand competition and climate as factors contributing to observed changes.Our analyses focused on historical records of spruce mortality and approximately 200 years of radial growth data to search for historical precedents for current trends. In this work we have used time series analysis to detect the temporal frequency of significant negative or positive shifts in radial growth rates, an analysis of relationships between a stand competition index and observed changes in growth and mortality, and modeling of past growth-climate relationships to determine whether recent growth changes could be predicted based on climate.Collectively, these analyses indicate that the observed growth decreases of surviving red spruce trees at northeastern sites with high mortality have been anomalous during the past 20 to 25 years with respect to both historical annual growth patterns and past relationships to climate or stand development at these sites. In general, reductions in radial increment that have also been noted at southern high elevation sites but not at low elevations occurred 5 to 10 years later than at northern sites and represent less substantive departures from growth trends predicted by linear climate models.These results suggest that regional and not local stresses have triggered the observed decline in radial growth of red spruce at these sites. While climatic change may have contributed to observed changes, the degree of radial growth suppression observed is greater than would be expected based on past growth-climate relationships. This unique relationship of growth to climate suggests the influences of either recent, unique combinations of climatic stresses or the possibly interactive intervention of other regional-scale stresses, such as atmospheric pollution.

2.
J Expo Anal Environ Epidemiol ; 11(1): 5-11, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11246801

RESUMEN

A high-flow personal sampler (HFPS) for airborne particulate matter has been developed and fully characterised, and validation tests have been carried out. The sampler is a low-cost gravimetric instrument designed to collect particulate matter with a 50% cut point at 2.5 microm aerodynamic equivalent diameter (PM2.5), where size selection is achieved by the use of porous polyurethane foam. Development of a porous foam selector was chosen over a cyclone or impactor due to the lightweight, low-cost, and compact design that could be achieved. The sampler flow rate of 16 1/min is achieved using a portable, flow-controlled pump; this flow rate is far higher than that of conventional personal samplers and the HFPS can therefore be used for personal sampling in the ambient environment over short sampling periods of much less than 24 h. The HFPS is currently being used in a study of particle exposure of urban transport users (cyclists, car drivers, bus and Underground rail passengers) where personal sampling over short time periods representing typical commuter journey times is required. The HFPS was fully characterised in chamber studies with a TSI aerodynamic particle sizer (APS). The sampler was then validated against a co-located U.S. EPA Federal Reference PM2.5 Well Impactor Ninety Six (WINS) and a KTL cyclone, and parallel testing was performed. Initial testing showed some penetration of particles through the porous foam structure; applying an oil coating to the foam eliminated this problem. Chamber testing was carried out on a number of different selector prototypes, with the final design giving a 50% penetration diameter (i.e., d50) of 2.4 microm at 16 1/min. The new sampler exhibited good agreement in three sets of co-located tests with established samplers, and parallel testing showed excellent agreement between paired HFPS samplers.


Asunto(s)
Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Ventilación , Movimientos del Aire , Diseño de Equipo , Humanos , Materiales Manufacturados , Tamaño de la Partícula , Sensibilidad y Especificidad
3.
Sci Total Environ ; 279(1-3): 29-44, 2001 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-11712603

RESUMEN

In order to investigate a specific area of short-term, non-occupational, human exposure to fine particulate air pollution, measurements of personal exposure to PM2.5 in transport microenvironments were taken in two separate field studies in central London, UK. A high flow gravimetric personal sampling system was used; operating at 16 l min(-1); the sampler thus allowed for sufficient sample mass collection for accurate gravimetric analysis of short-term travel exposure levels over typical single commute times. In total, samples were taken on 465 journeys and 61 volunteers participated. In a multi-transport mode study, carried out over 3-week periods in the winter and in the summer, exposure levels were assessed along three fixed routes at peak and off-peak times of the day. Geometric means of personal exposure levels were 34.5 microg m(-3) (G.S.D.= 1.7, n(s) = 40), 39.0 microg m(-3) (G.S.D. = 1.8, n(s) = 36), 37.7 microg m(-3) (G.S.D. = 1.5, n(s) = 42), and 247.2 microg m(-3) (G.S.D. = 1.3, n(s) = 44) for bicycle, bus, car and Tube (underground rail system) modes, respectively, in the July 1999 (summer) measurement campaign. Corresponding levels in the February 2000 (winter) measurement campaign were 23.5 microg m(-3) (G.S.D. = 1.8, n(s) = 56), 38.9 microg m(-3) (G.S.D. = 2.1, n(s) = 32), 33.7 microg m(-3) (G.S.D. = 2.4, n(s) = 12), and 157.3 microg m(-3) (G.S.D. = 3.3, n(s) = 12), respectively. In a second study, exposure levels were measured for a group of 24 commuters travelling by bicycle, during August 1999, in order to assess how representative the fixed route studies were to a larger commuter population. The geometric mean exposure level was 34.2 microg m(-3) (G.S.D. = 1.9, n(s) = 105). In the fixed-route study, the cyclists had the lowest exposure levels, bus and car were slightly higher, while mean exposure levels on the London Underground rail system were 3-8 times higher than the surface transport modes. There was significant between-route variation, most notably between the central route and the other routes. The fixed-route study exposure was similar in level and in variability to the 'real' commuters study, suggesting that the routes chosen and the number of samples taken provided a reasonably good estimate of the personal exposure levels in the transport microenvironments of Central London. This first comprehensive PM2.5 multi-mode transport user exposure assessment study in the UK also showed that mean personal exposure levels in road transport modes were approximately double that of the PM2.5 concentration at an urban background fixed site monitor.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Transportes , Adulto , Movimientos del Aire , Conducción de Automóvil , Ciclismo , Humanos , Londres , Tamaño de la Partícula , Estaciones del Año , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA