Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2218-2227, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165015

RESUMEN

Density functional theory calculations were performed to identify product, reactant and intermediate dissociative/associative structures for the oxygen abstraction and addition reactions: Rh10On + CO → Rh10On-1 + CO2, n = 1-5 and Rh10On + N2O → Rh10On+1 + N2, n = 0-4 reactions. In the case of the oxygen abstraction reactions, the energetics of the reaction path were very similar in energy regardless of the number of oxygen atoms on the Rh10On cluster, whereas for the addition of oxygen to the Rh10On cluster, the reaction was found to become significantly less exothermic with each successive addition of oxygen.

2.
Phys Chem Chem Phys ; 26(20): 14970-14979, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739372

RESUMEN

Curcumin is a medicinal agent that exhibits anti-cancer and anti-Alzheimer's disease properties. It has a keto-enol moiety that gives rise to many of its chemical properties including metal complexation and acid-base equilibria. A previous study has shown that keto-enol tautomerization at this moiety is implicated in the anti-Alzheimer's disease effect of curcumin, highlighting the importance of this process. In this study, tautomerization of curcumin in methanol, acetone and acetonitrile was investigated using time-resolved 1H nuclear magnetic resonance spectroscopy. Curcumin undergoes hydrogen-deuterium exchange with the solvents and the proton resonance peak corresponding to the hydrogen at the α-carbon position (Cα) decays as a function of time, signifying deuteration at this position. Because tautomerization is the rate limiting step in the deuteration of curcumin at the Cα position, the rate of tautomerization is inferred from the rate of deuteration. The rate constant of tautomerization of curcumin shows a temperature dependence and analysis using the Arrhenius equation revealed activation energies (Ea) of tautomerization of (80.1 ± 5.9), (64.1 ± 1.0) and (68.3 ± 5.5) kJ mol-1 in methanol, D2O/acetone and D2O/acetonitrile, respectively. Insight into the role of water in tautomerization of curcumin was further offered by density functional theory studies. The transition state of tautomerization was optimized in the presence of water molecules. The results show a hydrogen-bonded solvent bridge between the diketo moiety and Cα of curcumin. The Ea of tautomerization of curcumin shows a strong dependence on the number of water molecules in the solvent bridge, indicating the critical role played by the solvent bridge in catalyzing tautomerization of curcumin.


Asunto(s)
Curcumina , Curcumina/química , Metanol/química , Acetonitrilos/química , Acetona/química , Isomerismo , Termodinámica , Solventes/química
3.
Angew Chem Int Ed Engl ; 63(13): e202316873, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324467

RESUMEN

ß-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable ß-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of ß-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .

4.
Angew Chem Int Ed Engl ; 63(16): e202400009, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38415815

RESUMEN

Covalent organic frameworks are a novel class of crystalline porous polymers that enable molecular design of extended polygonal skeletons to attain well-defined porous structures. However, construction of a framework that allows remote control of pores remains a challenge. Here we report a strategy that merges covalent, noncovalent, and photo chemistries to design photoresponsive frameworks with reversibly and remotely controllable pores. We developed a topology-guided multicomponent polycondensation system that integrates protruded tetrafluoroazobenzene units as photoresponsive sites on pore walls at predesigned densities, so that a series of crystalline porous frameworks with the same backbone can be constructed to develop a broad spectrum of pores ranging from mesopores to micropores. Distinct from conventional azobenzene-based systems, the tetrafluoroazobenzene frameworks are highly sensitive to visible lights to undergo high-rate isomerization. The photoisomerization exerts profound effects on pore size, shape, number, and environment, as well as molecular uptake and release, rendering the system able to convert and switch pores reversibly and remotely with visible lights. Our results open a way to a novel class of smart porous materials with pore structures and functions that are convertible and manageable with visible lights.

5.
ACS Appl Mater Interfaces ; 16(15): 19877-19883, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38570930

RESUMEN

Anthracene- and pyrene-based twisted porous graphene (AN-Pyre-PG) with an ordered pore structure has been synthesized through bottom-up solution phase synthesis from a conjugated microporous polymer (AN-Pyre-CMP) via a heterogeneous Scholl cyclization reaction. The regular-ordered pores embedded within the graphene structures were analyzed through a Raman spectrum, different morphological analyses, and theoretical studies. A significant change in surface area from AN-Pyre-CMP to AN-Pyre-PG was observed, from 143 to 640 m2/g, respectively. Surface area-driven capacitive properties were also observed. Twisted-structure and ordered porous graphene shows better specific capacitance compared to CMP. AN-Pyre-PG shows a specific capacitance of 629 F g-1 at 1 A g-1, with 91% retention of capacitance after 3000 charge-discharge cycles, whereas AN-Pyre-CMP shows a maximum specific capacitance of 200 F g-1 was observed at 2 A g-1.

6.
Food Chem ; 455: 139869, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850977

RESUMEN

Although citric acid (CA) has antioxidant, antibacterial, and acidulating properties, chronic ingestion of CA can cause urolithiasis, hypocalcemia, and duodenal cancer, emphasizing the need for early detection. There are very few documented electrochemical-based sensing methods for CA detection due to the challenging behavior of electrode fouling caused by reactive oxidation products. In this study, a novel, non-enzymatic, and economical electrochemical sensor based on cobalt oxide nanoparticles (CoOxNPs) is successfully reported for detection CA. The CoOxNPs were synthesized through a simple thermal decomposition method and characterized by SEM, FT-IR, EDX, and XRD techniques. The proposed sensing platform was optimized by various parameters, including pH (7.0), time (15 min), and concentration of nanoparticles (100 mM) etc. In a linear range of 0.05-2500 µM, a low detection limit (LOD) of 0.13 µM was achieved. Theoretical calculations (ΔRT), confirmed hydrogen bonding and electrostatic interactions between CoOxNPs and CA. The detection method exhibited high selectivity in real media like food and biological samples, with good recovery values when compared favorably to the HPLC method. To facilitate effective on-site investigation, such a sensing platform can be assembled into a portable device.


Asunto(s)
Ácido Cítrico , Cobalto , Técnicas Electroquímicas , Óxidos , Cobalto/química , Técnicas Electroquímicas/instrumentación , Óxidos/química , Ácido Cítrico/química , Nanopartículas del Metal/química , Límite de Detección , Nanopartículas/química
7.
Mater Horiz ; 11(16): 3878-3884, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38787745

RESUMEN

The charge-trapping mechanism in conjugated polymers is a performance obstacle in many optoelectronic devices harnessed for non-volatile memory applications. Herein, a carbonyl-decorated organic 2D-polymer (TpDb)-based charge-trapping memory device has been developed with a wide memory window (3.2 V) with low programming and erasing voltages of +3/-2 and -3/+2. The TpDb was synthesized by a potentially scalable solid-state aldol condensation reaction. The inherent structural defects and the semi-conjugated nature of the enone network in TpDb offer effective charge-trapping through the localization of charges in specific functional groups (CO). The interlayer hydrogen bonding enhances the packing density of the 2D-polymer layers thereby improving the memory storage properties of the material. Furthermore, the TpDb exhibits excellent features for non-volatile memory applications including over 10 000 cycles of write/read endurance and a prolonged retention performance of 104 seconds at high temperatures (100 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA