Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(4): 2740-2748, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28059415

RESUMEN

The oriented immobilization of proteins, key for the development of novel responsive biomaterials, relies on the availability of effective probes. These are generally provided by standard approaches based on in vivo maturation and in vitro selection of antibodies and/or aptamers. These techniques can suffer technical problems when a non-immunogenic epitope needs to be targeted. Here we propose a strategy to circumvent this issue by in silico design. In our method molecular binders, in the form of cyclic peptides, are computationally evolved by stochastically exploring their sequence and structure space to identify high-affinity peptides for a chosen epitope of a target globular protein: here a solvent-exposed site of ß2-microglobulin (ß2m). Designed sequences were screened by explicit solvent molecular dynamics simulations (MD) followed by experimental validation. Five candidates gave dose-response surface plasmon resonance signals with dissociation constants in the micromolar range. One of them was further analyzed by means of isothermal titration calorimetry, nuclear magnetic resonance, and 250 ns of MD. Atomic-force microscopy imaging showed that this peptide is able to immobilize ß2m on a gold surface. In short, we have shown by a variety of experimental techniques that it is possible to capture a protein through an epitope of choice by computational design.


Asunto(s)
Técnicas de Química Analítica/métodos , Simulación por Computador , Péptidos Cíclicos/química , Proteínas/aislamiento & purificación , Epítopos/química , Modelos Químicos , Simulación de Dinámica Molecular , Péptidos Cíclicos/metabolismo
2.
J Am Chem Soc ; 138(39): 12735-12738, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27631465

RESUMEN

We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices able to sense and respond to molecular markers associated with abnormal metabolism.


Asunto(s)
ADN/química , Concentración de Iones de Hidrógeno , Cinética , Nanoestructuras/química
3.
Methods Mol Biol ; 1811: 151-162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29926451

RESUMEN

Peptide microarrays are becoming a promising alternative to protein microarrays due to the challenges associated with protein immobilization and purification. Here, we put forward a novel experimental-based approach that combines DNA-directed immobilization, nanografting, and atomic force height measurements to immobilize computationally designed cyclic peptide on an ultra-flat gold substrate. This procedure yields peptide-DNA nanoarrays, which can bind to the solvent-exposed site on the Beta-2-microglobulin (ß2m).


Asunto(s)
Oro/química , Ácidos Nucleicos Inmovilizados/química , Péptidos Cíclicos/química , Microglobulina beta-2/análisis , Técnicas Biosensibles/métodos , Humanos , Microscopía de Fuerza Atómica , Nanotecnología , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA