Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 470: 49-61, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188738

RESUMEN

Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.


Asunto(s)
Actomiosina/metabolismo , Citoesqueleto/ultraestructura , Infertilidad Masculina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Células de Sertoli/fisiología , Actinas/metabolismo , Actomiosina/química , Animales , Barrera Hematotesticular/metabolismo , Forma de la Célula , Citoesqueleto/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Tamaño de los Órganos , Permeabilidad , Mutación Puntual , Células de Sertoli/citología , Células de Sertoli/ultraestructura , Testículo/patología , Tubulina (Proteína)/metabolismo
2.
Nat Immunol ; 11(10): 953-61, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20835229

RESUMEN

During trafficking through tissues, T cells fine-tune their motility to balance the extent and duration of cell-surface contacts versus the need to traverse an entire organ. Here we show that in vivo, myosin IIA-deficient T cells had a triad of defects, including overadherence to high-endothelial venules, less interstitial migration and inefficient completion of recirculation through lymph nodes. Spatiotemporal analysis of three-dimensional motility in microchannels showed that the degree of confinement and myosin IIA function, rather than integrin adhesion (as proposed by the haptokinetic model), optimized motility rate. This motility occurred via a myosin IIA-dependent rapid 'walking' mode with multiple small and simultaneous adhesions to the substrate, which prevented spurious and prolonged adhesions. Adhesion discrimination provided by myosin IIA is thus necessary for the optimization of motility through complex tissues.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular , Ganglios Linfáticos/inmunología , Miosina Tipo IIA no Muscular/fisiología , Linfocitos T/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Nat Rev Mol Cell Biol ; 10(11): 778-90, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19851336

RESUMEN

Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Animales , Humanos
4.
J Cell Sci ; 131(6)2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29487177

RESUMEN

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular/genética , Unión Proteica , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Tropomiosina/genética
5.
J Cell Sci ; 130(16): 2696-2706, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28687623

RESUMEN

Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/fisiología , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo IIB no Muscular/fisiología , Pericardio/citología , Pericardio/embriología , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Corazón/embriología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Organogénesis/genética
6.
Dev Biol ; 427(1): 121-130, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28478097

RESUMEN

In kidney development, connection of the nephric duct (ND) to the cloaca and subsequent sprouting of the ureteric bud (UB) from the ND are important for urinary exit tract formation. Although the roles of Ret signaling are well established, it remains unclear how intracellular cytoskeletal proteins regulate these morphogenetic processes. Myh9 and Myh10 encode two different non-muscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases. Here we report that ND/UB lineage-specific deletion of Myh9/Myh10 in mice caused severe hydroureter/hydronephrosis at birth. At mid-gestation, the mutant ND/UB epithelia exhibited aberrant basal protrusion and ectopic UB formation, which likely led to misconnection of the ureter to the bladder. In addition, the mutant epithelia exhibited apical extrusion followed by massive apoptosis in the lumen, which could be explained by reduced apical constriction and intercellular adhesion mediated by E-cadherin. These phenotypes were not ameliorated by genetic reduction of the tyrosine kinase receptor Ret. In contrast, ERK was activated in the mutant cells and its chemical inhibition partially ameliorated the phenotypes. Thus, myosin II is essential for maintaining the apicobasal integrity of the developing kidney epithelia independently of Ret signaling.


Asunto(s)
Epitelio/anomalías , Riñón/embriología , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Uréter/anomalías , Vejiga Urinaria/anomalías , Animales , Animales Recién Nacidos , Perros , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Nefronas/anomalías , Nefronas/metabolismo , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIB no Muscular/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Uréter/metabolismo , Vejiga Urinaria/metabolismo
7.
Traffic ; 15(4): 418-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24443954

RESUMEN

Variable requirements for actin during clathrin-mediated endocytosis (CME) may be related to regional or cellular differences in membrane tension. To compensate, local regulation of force generation may be needed to facilitate membrane curving and vesicle budding. Force generation is assumed to occur primarily through actin polymerization. Here we examine the role of myosin II using loss of function experiments. Our results indicate that myosin II acts on cortical actin scaffolds primarily in the plane of the plasma membrane (bottom arrow) to generate changes that are critical for enhancing CME progression.


Asunto(s)
Clatrina/fisiología , Endocitosis/fisiología , Miosina Tipo II/fisiología , Actinas/metabolismo , Animales , Ratones , Ratones Noqueados , Músculos/fisiología , Miosina Tipo II/genética , Transferrina/metabolismo
8.
Hum Mol Genet ; 23(21): 5706-19, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24908670

RESUMEN

Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/metabolismo , Estrona/genética , Silenciador del Gen , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Cardiomegalia/complicaciones , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Recambio Mitocondrial , Tamaño de los Órganos/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Transducción de Señal , Sirolimus/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Función Ventricular/efectos de los fármacos
9.
Hepatology ; 62(6): 1858-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26126491

RESUMEN

UNLABELLED: Keratins, among other cytoskeletal intermediate filament proteins, are mutated at a highly conserved arginine with consequent severe disease phenotypes due to disruption of keratin filament organization. We screened a kinase inhibitor library, using A549 cells that are transduced with a lentivirus keratin 18 (K18) construct, to identify compounds that normalize filament disruption due to K18 Arg90Cys mutation at the conserved arginine. High-throughput screening showed that PKC412, a multikinase inhibitor, ameliorated K18 Arg90Cys-mediated keratin filament disruption in cells and in the livers of previously described transgenic mice that overexpress K18 Arg90Cys. Furthermore, PKC412 protected cultured A549 cells that express mutant or wild-type K18 and mouse livers of the K18 Arg90Cys-overexpressing transgenic mice from Fas-induced apoptosis. Proteomic analysis of proteins that associated with keratins after exposure of K18-expressing A549 cells to PKC412 showed that nonmuscle myosin heavy chain-IIA (NMHC-IIA) partitions with the keratin fraction. The nonmuscle myosin-IIA (NM-IIA) association with keratins was confirmed by immune staining and by coimmunoprecipitation. The keratin-myosin association is myosin dephosphorylation-dependent; occurs with K8, the obligate K18 partner; is enhanced by PKC412 in cells and mouse liver; and is blocked by hyperphosphorylation conditions in cultured cells and mouse liver. Furthermore, NMHC-IIA knockdown inhibits PKC412-mediated normalization of K18 R90C filaments. CONCLUSION: The inhibitor PKC412 normalizes K18 Arg90Cys mutation-induced filament disruption and disorganization by enhancing keratin association with NM-IIA in a myosin dephosphorylation-regulated manner. Targeting of intermediate filament disorganization by compounds that alter keratin interaction with their associated proteins offers a potential novel therapeutic approach for keratin and possibly other intermediate filament protein-associated diseases.


Asunto(s)
Filamentos Intermedios/genética , Queratinas/metabolismo , Hepatopatías/genética , Mutación , Miosinas/metabolismo , Estaurosporina/análogos & derivados , Animales , Ratones , Ratones Transgénicos , Unión Proteica , Estaurosporina/fisiología
10.
J Am Soc Nephrol ; 26(5): 1081-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25168025

RESUMEN

The kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud. The mesenchyme transforms into epithelia and forms complicated nephron structures, whereas the ureteric bud extends its pre-existing epithelial ducts. Although the roles are well established for extracellular stimuli, such as Wnt and Notch, it is unclear how the intracellular cytoskeleton regulates these morphogenetic processes. Myh9 and Myh10 encode nonmuscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases and focal segmental glomerulosclerosis in adults. Here, we analyzed the roles of Myh9 and Myh10 in the developing kidney. Ureteric bud-specific depletion of Myh9 resulted in no apparent phenotypes, whereas mesenchyme-specific Myh9 deletion caused proximal tubule dilations and renal failure. Mesenchyme-specific Myh9/Myh10 mutant mice died shortly after birth and showed a severe defect in nephron formation. The nascent mutant nephrons failed to form a continuous lumen, which likely resulted from impaired apical constriction of the elongating tubules. In addition, nephron progenitors lacking Myh9/Myh10 or the possible interactor Kif26b were less condensed at midgestation and reduced at birth. Taken together, nonmuscle myosin II regulates the morphogenesis of immature nephrons derived from the metanephric mesenchyme and the maintenance of nephron progenitors. Our data also suggest that Myh9 deletion in mice results in failure to maintain renal tubules but not in glomerulosclerosis.


Asunto(s)
Morfogénesis , Cadenas Pesadas de Miosina/fisiología , Nefronas/embriología , Miosina Tipo IIA no Muscular/fisiología , Miosina Tipo IIB no Muscular/fisiología , Animales , Animales Recién Nacidos , Mesodermo/fisiología , Ratones Endogámicos C57BL , Nefronas/metabolismo , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA