Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161280

RESUMEN

Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.


Asunto(s)
Condrocitos/patología , Articulaciones/fisiopatología , Actividad Motora , Osteogénesis Imperfecta/fisiopatología , Osteogénesis , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Animales Recién Nacidos , Condrogénesis/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Marcha , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidroxilación , Inflamación/genética , Inflamación/patología , Articulaciones/patología , Ligamentos/patología , Lisina/metabolismo , Ratones , Modelos Biológicos , Osificación Heterotópica/complicaciones , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Osteogénesis/genética , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Péptidos/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Tendones/patología
2.
Am J Physiol Cell Physiol ; 321(2): C230-C246, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979214

RESUMEN

The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that 1) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and 2) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-wk-old mice whose muscles reflected the prefibrotic and prenecrotic state. Compared with controls, 1) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and 2) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-mo-old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the prefibrotic/prenecrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin.


Asunto(s)
Distrofina/deficiencia , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Modelos Animales de Enfermedad , Contracción Isométrica/fisiología , Ratones Transgénicos , Distrofia Muscular de Duchenne/fisiopatología
3.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R443-R450, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100474

RESUMEN

Muscle shortening and volume displacement (VD) are critical determinants of the pressure-generating capacity of the diaphragm. The present study was designed to test the hypothesis that diaphragm VD is heterogeneous and that distribution of VD is dependent on regional muscle shortening, posture, and the level of muscle activation. Radioopaque markers were sutured along muscle bundles of the peritoneal surface of the crural, dorsal costal, midcostal, and ventral costal regions of the left hemidiaphragm in four dogs. The markers were followed by biplanar video fluoroscopy during quiet spontaneous breathing, passive inflation to total lung capacity (TLC), and inspiratory efforts against an occluded airway at three lung volumes spanning the vital capacity [functional residual capacity, functional residual capacity + ½ inspiratory capacity, and TLC in both the prone and supine postures]. Our data show the ventral costal diaphragm had the largest VD and contributed nearly two times to the total diaphragm VD compared with the dorsal costal portion. In addition, the ventral costal diaphragm contributed nearly half of the total VD in the prone position, whereas it only contributed a quarter of the total VD in the supine postition. During efforts against an occluded airway and during passive inflation to TLC in the supine position, the crural diaphragm displaced volume equivalent to that of the midcostal portion. Regional muscle shortening closely matched regional VD. We conclude that the primary force generator of the diaphragm is primarily dominated by the contribution of the ventral costal region to its VD.


Asunto(s)
Diafragma/anatomía & histología , Diafragma/fisiología , Contracción Muscular/fisiología , Postura/fisiología , Mecánica Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología , Animales , Diafragma/diagnóstico por imagen , Perros , Femenino , Tamaño de los Órganos/fisiología
4.
J Clin Invest ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38885336

RESUMEN

Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes in addition to bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in IFITM5. Here, we generated a conditional Rosa26 knock-in mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in OI type V patients. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with increase in the skeletal progenitor population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 showed decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupts early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.

5.
Curr Med Chem ; 26(30): 5664-5683, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250748

RESUMEN

Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/diagnóstico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos/química , Humanos , Estructura Molecular , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA