Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 22(9): 3718-3730, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34333966

RESUMEN

Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.


Asunto(s)
Dióxido de Silicio , Ubiquitina , Proteínas Inmovilizadas , Espectroscopía de Resonancia Magnética , Proteínas
2.
J Exp Bot ; 71(21): 6830-6843, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32485738

RESUMEN

Silicon is absorbed by plant roots as silicic acid. The acid moves with the transpiration stream to the shoot, and mineralizes as silica. In grasses, leaf epidermal cells called silica cells deposit silica in most of their volume using an unknown biological factor. Using bioinformatics tools, we identified a previously uncharacterized protein in Sorghum bicolor, which we named Siliplant1 (Slp1). Slp1 is a basic protein with seven repeat units rich in proline, lysine, and glutamic acid. We found Slp1 RNA in sorghum immature leaf and immature inflorescence. In leaves, transcription was highest just before the active silicification zone (ASZ). There, Slp1 was localized specifically to developing silica cells, packed inside vesicles and scattered throughout the cytoplasm or near the cell boundary. These vesicles fused with the membrane, releasing their content in the apoplastic space. A short peptide that is repeated five times in Slp1 precipitated silica in vitro at a biologically relevant silicic acid concentration. Transient overexpression of Slp1 in sorghum resulted in ectopic silica deposition in all leaf epidermal cell types. Our results show that Slp1 precipitates silica in sorghum silica cells.


Asunto(s)
Sorghum , Hojas de la Planta , Raíces de Plantas , Silicio , Dióxido de Silicio , Sorghum/genética
4.
Chem Commun (Camb) ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973676

RESUMEN

The microperoxidase-11 hemopeptide exhibits configuration-dependent selectivity for guanine-quadruplexes by specifically uncaging c-MYC guanine-quadruplexes from a duplex DNA.

5.
Acta Biomater ; 112: 286-297, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32434074

RESUMEN

Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique proteins with high repeats of specific amino acids and unusual sidechain modifications. Some silicifying proteins are characterized by high prevalence of basic amino acids in their primary structures. Lysine-rich domains are found, for instance, in diatom silaffin proteins and in the sorghum grass siliplant1 protein. These domains exhibit catalytic activity in silica chain condensation, owing to molecular interactions of the lysine amine groups with the forming mineral. The use of amine chemistry by two very remote organisms has motivated us to seek other molecular biosilicification processes that may be common to the two life forms. In diatom silaffins, domains rich in phosphoserine residues are thought to assist the assembly of silaffin molecules into an organic supra-structure which serves as a template for the silica to precipitate on. This mold, held by salt bridges between serine phosphates and lysine amines, dictates the shape of the silica particles formed. Yet, silica synthesized with the dephosphorylated silaffin in phosphate buffer showed similar morphology to the one prepared with the native protein, suggesting that a defined spatial arrangement of serine phosphates is not required to generate silica with the desired shape. Concurrently, free phosphates enhanced the activity of siliplant1 in silica formation. It is therefore beneficial to characterize the involvement of these anions as co-factors in regulated silicification by functional peptides from the two proteins and to understand whether they play similar molecular role in the mechanism of mineralization. Here we analyze the molecular interactions of free phosphate ions with silica and the silaffin peptide PL12 and separately with silica and siliplant1 peptide SLP1 in the two biomimetic silica products generated by the two peptides. MAS NMR measurements show that the phosphate ions interact with the peptides and at the same time may be forming bonds with the silica mineral. This bridging capability may add another avenue by which the structure of the silica material is influenced. A model for the molecular/ionic interactions at the bio-inorganic interface is described, which may have bearings for the role of phosphorylated residues beyond the function as intermolecular cross linkers or free phosphate ions as co-factors in regulation of silicification. STATEMENT OF SIGNIFICANCE: The manuscript addresses the question how proteins in diatoms and plants regulate the biosilica materials that are produced for various purposes in organisms. It uses preparation of silica in vitro with functional peptide derivatives from a sorghum grass protein and from a diatom silaffin protein separately to show that phosphate ions are important for the control that is achieved by these proteins on the final shape of the silica material produced. It portrays via magnetic resonance spectroscopic measurements, in atomic detail, the interface between atoms in the peptide, atoms on the surface of the silica formed and the phosphate ions that form chemical bonds with atoms on the silica as part of the mechanism of action of these peptides.


Asunto(s)
Diatomeas , Materiales Biocompatibles , Péptidos , Fosfatos , Poaceae , Dióxido de Silicio
6.
Biointerphases ; 12(2): 02D414, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28565916

RESUMEN

Deriving the conformation of adsorbed proteins is important in the assessment of their functional activity when immobilized. This has particularly important bearings on the design of contemporary and new encapsulated enzyme-based drugs, biosensors, and other bioanalytical devices. Solid-state nuclear magnetic resonance (NMR) measurements can expand our molecular view of proteins in this state and of the molecular interactions governing protein immobilization on popular biocompatible surfaces such as silica. Here, the authors study the immobilization of ubiquitin on the mesoporous silica MCM41 by NMR and other techniques. Protein molecules are shown to bind efficiently at pH 5 through electrostatic interactions to individual MCM41 particles, causing their agglutination. The strong attraction of ubiquitin to MCM41 surface is given molecular context through evidence of proximity of basic, carbonyl and polar groups on the protein to groups on the silica surface using NMR measurements. The immobilized protein exhibits broad peaks in two-dimensional 13C dipolar-assisted rotational resonance spectra, an indication of structural multiplicity. At the same time, cross-peaks related to Tyr and Phe sidechains are missing due to motional averaging. Overall, the favorable adsorption of ubiquitin to MCM41 is accompanied by conformational heterogeneity and by a major loss of motional degrees of freedom as inferred from the marked entropy decrease. Nevertheless, local motions of the aromatic rings are retained in the immobilized state.


Asunto(s)
Proteínas Inmovilizadas/química , Resonancia Magnética Nuclear Biomolecular , Dióxido de Silicio/química , Ubiquitina/química , Humanos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA