Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 76(3): 340-346, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34342789

RESUMEN

Brassica vegetables are common in cuisines worldwide. The aim of this study was to investigate the antiglycation, methylglyoxal (MG)-trapping action and antioxidant activity of Brassica vegetable extract (BVE) from cabbage, cauliflower and Chinese cabbage. The results showed that cauliflower had the highest phenolic content with the strongest DPPH radical scavenging activity, ferric reducing antioxidant power and oxygen radical absorbance capacity. Seven phenolic acids and three flavonoids were identified by ESI-Q-TOF-MS analysis. The common phenolic compounds in all BVE were sinapic acid and p-hydroxybenzoic acid. The BVE (0.5 mg/mL) showed significant inhibitory activity against glucose-induced fluorescent advanced glycation end products (AGEs) formation (34 - 67%) and preserved the amount of protein thiol group (30 - 35%). In addition, all extracts (0.125 - 4 mg/mL) also had the ability to trap MG, a reactive glycating agent. Total phenolic content of BVE exhibited a positive correlation with DPPH radical scavenging activity (r = 0.524) and % inhibition of AGE formation (r = 0.570) and % MG-trapping capacity (r = 0.786). These findings suggest that the BVE possesses antioxidant and antiglycating activity that may help to protect against protein glycation and oxidation mediated by glycation reaction.


Asunto(s)
Antioxidantes , Brassica , Antioxidantes/farmacología , Productos Finales de Glicación Avanzada , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Piruvaldehído , Verduras
2.
J Cell Physiol ; 235(2): 1723-1732, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31301074

RESUMEN

Intracellular Ca2+ signals are essential for stem cell function and play a significant role in the differentiation process. Dental pulp stem cells (DPSCs) are a potential source of stem cells; however, the mechanisms controlling cell differentiation remain largely unknown. Utilizing rat DPSCs, we examined the effect of adenosine triphosphate (ATP) on osteoblast differentiation and characterized its mechanism of action using real-time Ca 2+ imaging analysis. Our results revealed that ATP enhanced osteogenesis as indicated by Ca 2+ deposition in the extracellular matrix via Alizarin Red S staining. This was consistent with upregulation of osteoblast genes BMP2, Mmp13, Col3a1, Ctsk, Flt1, and Bgn. Stimulation of DPSCs with ATP (1-300 µM) increased intracellular Ca 2+ signals in a concentration-dependent manner, whereas histamine, acetylcholine, arginine vasopressin, carbachol, and stromal-cell-derived factor-1α failed to do so. Depletion of intracellular Ca 2+ stores in the endoplasmic reticulum by thapsigargin abolished the ATP responses which, nevertheless, remained detectable under extracellular Ca 2+ free condition. Furthermore, the phospholipase C (PLC) inhibitor U73122 and the inositol triphosphate (IP 3 ) receptor inhibitor 2-aminoethoxydiphenyl borate inhibited the Ca 2+ signals. Our findings provide a better understanding of how ATP controls osteogenesis in DPSCs, which involves a Ca 2+ -dependent mechanism via the PLC-IP 3 pathway. This knowledge could help improve osteogenic differentiation protocols for tissue regeneration of bone structures.


Asunto(s)
Adenosina Trifosfato/farmacología , Señalización del Calcio/fisiología , Pulpa Dental/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Fosfolipasas de Tipo C/metabolismo
3.
BMC Complement Altern Med ; 19(1): 242, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488210

RESUMEN

BACKGROUND: Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, possesses anti-oxidant, anti-hyperglycemic, anti-glycation and cardioprotective properties. However, its mechanisms responsible for anti-hyperlipidemic activity have not been fully identified. The aim of the study was to investigate the lipid-lowering mechanisms of C3R through inhibition of lipid digestion and absorption in vitro. METHODS: The inhibitory activity of C3R against pancreatic lipase and cholesterol esterase was evaluated using enzymatic fluorometric and enzymatic colorimetric assays, respectively. An enzyme kinetic study using Michaelis-Menten and the derived Lineweaver-Burk plot was performed to understand the possible types of inhibition. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. The NBD cholesterol uptake in Caco-2 cells was determined using fluorometric assay. The mRNA expression of cholesterol transporter (Niemann-Pick C1-like 1) was determined by RT-PCR. RESULTS: The results showed that C3R was a mixed-type competitive inhibitor of pancreatic lipase with the IC50 value of 59.4 ± 1.41 µM. Furthermore, C3R (0.125-1 mM) inhibited pancreatic cholesterol esterase about 5-18%. In addition, C3R inhibited the formation of cholesterol micelles and bound to primary and secondary bile acid. In Caco-2 cells, C3R (12.5-100 µM) exhibited a significant reduction in cholesterol uptake in both free cholesterol (17-41%) and mixed micelles (20-30%). Finally, C3R (100 µM) was able to suppress mRNA expression of NPC1L1 in Caco-2 cells after 24 h incubation. CONCLUSIONS: The present findings suggest that C3R acts as a lipid-lowering agent through inhibition of lipid digestion and absorption.


Asunto(s)
Antocianinas/farmacología , Inhibidores Enzimáticos/farmacología , Absorción Intestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Antocianinas/química , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Colesterol/química , Colesterol/metabolismo , Inhibidores Enzimáticos/química , Humanos , Cinética , Esterol Esterasa/antagonistas & inhibidores , Esterol Esterasa/química , Esterol Esterasa/metabolismo , Porcinos
4.
Molecules ; 24(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108834

RESUMEN

Clitoria ternatea (commonly known as blue pea) flower petal extract (CTE) is used as a natural colorant in a variety of foods and beverages. The objective of study was to determine the inhibitory effect of CTE on adipogenesis in 3T3-L1 preadipocytes. The phytochemical profiles of CTE were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Anti-adipogenesis effect of CTE was measured by using Oil Red O staining, intracellular triglyceride assay, quantitative real-time PCR and western blot analysis in 3T3-L1 adipocytes. Cell cycle studies were performed by flow cytometry. Lipolysis experiments were performed using a colorimetric assay kit. In early stages, CTE demonstrated anti-adipogenic effects through inhibition of proliferation and cell cycle retardation by suppressing expression of phospho-Akt and phospho-ERK1/2 signaling pathway. The results also showed that CTE inhibited the late stage of differentiation through diminishing expression of adipogenic transcription factors including PPARγ and C/EBPα. The inhibitory action was subsequently attenuated in downregulation of fatty acid synthase and acetyl-CoA carboxylase, causing the reduction of TG accumulation. In addition, CTE also enhanced catecholamine-induced lipolysis in adipocytes. These results suggest that CTE effectively attenuates adipogenesis by controlling cell cycle progression and downregulating adipogenic gene expression.


Asunto(s)
Adipocitos/citología , Adipogénesis/efectos de los fármacos , Clitoria/química , Metabolismo de los Lípidos/efectos de los fármacos , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Flores/química , Regulación de la Expresión Génica/efectos de los fármacos , Lipólisis , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Extractos Vegetales/aislamiento & purificación
5.
BMC Complement Altern Med ; 18(1): 6, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29310631

RESUMEN

BACKGROUND: Clitoria ternatea L., a natural food-colorant containing anthocyanin, demonstrated antioxidant and antihyperglycemic activity. The aim of this study was to determine the effects of Clitoria ternatea flower extract (CTE) on postprandial plasma glycemia response and antioxidant status in healthy men. METHODS: In a randomized, crossover study, 15 healthy men (ages 22.53 ± 0.30 years; with body mass index of 21.57 ± 0.54 kg/m2) consumed five beverages: (1) 50 g sucrose in 400 mL water; (2) 1 g CTE in 400 mL of water; (3) 2 g CTE in 400 mL of water; (4) 50 g sucrose and 1 g CTE in 400 mL of water; and (5) 50 g sucrose and 2 g CTE in 400 mL of water. Incremental postprandial plasma glucose, insulin, uric acid, antioxidant capacities and lipid peroxidation were measured during 3 h of administration. RESULTS: After 30 min ingestion, the postprandial plasma glucose and insulin levels were suppressed when consuming sucrose plus 1 g and 2 g CTE. In addition, consumption of CTE alone did not alter plasma glucose and insulin concentration in the fasting state. The significant increase in plasma antioxidant capacity (ferric reducing ability of plasma (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC), and protein thiol) and the decrease in malondialdehyde (MDA) level were observed in the subjects who received 1 g and 2 g CTE. Furthermore, consumption of CTE protected sucrose-induced reduction in ORAC and TEAC and increase in plasma MDA. CONCLUSIONS: These findings suggest that an acute ingestion of CTE increases plasma antioxidant capacity without hypoglycemia in the fasting state. It also improves postprandial glucose, insulin and antioxidant status when consumed with sucrose. TRIAL REGISTRATION: Thai Clinical Trials Registry: TCTR20170609003 . Registered 09 September 2017. 'retrospectively registered'.


Asunto(s)
Antioxidantes/farmacología , Glucemia/efectos de los fármacos , Clitoria/química , Extractos Vegetales/farmacología , Adulto , Antioxidantes/administración & dosificación , Bebidas , Estudios Cruzados , Humanos , Insulina/sangre , Peroxidación de Lípido/efectos de los fármacos , Masculino , Extractos Vegetales/administración & dosificación , Periodo Posprandial , Adulto Joven
6.
Molecules ; 23(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572593

RESUMEN

Diabetes mellitus (DM) is a disease that is caused by a malfunction of carbohydrate metabolism, which plays an important role in the development of long-term diabetic complications. The excess glucose can be transformed to methylglyoxal (MG), a potential precursor of glycation. Glycation is a spontaneous non-enzymatic reaction that initially yields advanced glycation end-products (AGEs), which ultimately triggers several severe complications. Therefore, the inhibition of AGEs formation is the imperative approach for alleviating diabetic complications. The aim of this research was to investigate the glycation and α-glucosidase inhibitory abilities of compounds isolated from fingerroot. The dichloromethane extract afforded three flavanones, two chalcones, two dihydrochalcones, and one kavalactone. Most of the isolated compounds showed higher inhibition effect against AGEs formation than aminoguanidine (AG). Subsequent evaluation in MG-trapping assay indicated that their trapping potency was relatively comparable to AG. Their structure-activity relationships (SAR) of MG-trapping activity were investigated using the comparison of the structures of flavonoids. In addition, pinocembrin displayed moderate α-glucosidase inhibition against both maltase and sucrose, with IC50 values of 0.35 ± 0.021 and 0.39 ± 0.020 mM, respectively.


Asunto(s)
Flavanonas/análisis , Flavanonas/farmacología , Inhibidores de Glicósido Hidrolasas/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Zingiberaceae/química , Productos Finales de Glicación Avanzada/análisis , Glicosilación/efectos de los fármacos , Piruvaldehído/análisis , Relación Estructura-Actividad
7.
J Food Sci Technol ; 55(8): 2881-2889, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30065397

RESUMEN

Bakery products are a food appreciated by consumers all over the world. There is a great opportunity to incorporate more bioactive compounds to enhance its quality. The objective of this study was to utilize the advantage of CTE in the production of sponge cake. The five different levels of CTE (0, 5, 10, 15 and 20%, w/w) was incorporated into sponge cake. The sponge cakes were evaluated for physicochemical (color, volume, water activity, total phenolic content, and antioxidant properties) and texture characteristics as well as consumer acceptance. Addition of CTE into the sponge cakes increased the polyphenol content and antioxidant activity concomitant with reduced lipid peroxidation. Increasing hardness, adhesiveness, gumminess, and chewiness and decreasing cohesiveness, springiness and resilience of cakes were seen when increasing percentage of CTE in the cake. A significant decrease was observed in the lightness, redness and yellowness in the cake containing CTE. No differences were found in overall acceptability between the control and the cake containing CTE. The findings suggest that CTE could be a potential source for development of sponge cakes with more effective antioxidant properties.

8.
BMC Complement Altern Med ; 16: 138, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27215203

RESUMEN

BACKGROUND: Advanced glycation end-products (AGEs) play a significant role in the development and progression of vascular complication in diabetes. Anthocyanin has been recently reported to possess antiglycating activity. This study aimed to determine whether a naturally occurring anthocyanin, cyanidin-3-rutinoside (C3R) inhibits methylglyoxal (MG) induced protein glycation and oxidative protein and DNA damage. METHODS: C3R (0.125-1 mM) was incubated with bovine serum albumin and MG (1 mM) for 2 weeks. The formation of fluorescent AGEs was measured by using spectrofluorometer and thiol group content were used to detect protein oxidative damage. Gel electrophoresis was used to determine whether C3R (0.125-1 mM) reduced DNA strand breakage in a glycation model comprising lysine, MG and/or Cu(2+). The generation of superoxide anions and hydroxyl radicals were detected by the cytochrome c reduction assay and the thiobarbituric acid reactive substances assay. MG-trapping capacity was assessed by high performance liquid chromatography (HPLC). RESULTS: C3R (0.25-1 mM) reduced the formation of fluorescent AGEs and depleted protein thiol groups in bovine serum albumin mediated by MG. At 1 mM C3R inhibited oxidative DNA damage in the glycation model (p < 0.05) and at 0.5-1 mM prevented Cu(2+) induced DNA strand breakage in the presence of lysine and MG. The findings showed that C3R reduced the formation of superoxide anion and hydroxyl radicals during the glycation reaction of MG with lysine. C3R directly trapped MG in a concentration and time dependent manner (both p < 0.001). CONCLUSIONS: These findings suggest that C3R protects against MG-induced protein glycation and oxidative damage to protein and DNA by scavenging free radicals and trapping MG.


Asunto(s)
Antocianinas/farmacología , Daño del ADN/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Piruvaldehído/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Animales , Bovinos , Radicales Libres/metabolismo , Técnicas In Vitro , Oxidación-Reducción , Albúmina Sérica Bovina , Compuestos de Sulfhidrilo/metabolismo
9.
BMC Complement Altern Med ; 16(1): 439, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814716

RESUMEN

BACKGROUND: Obesity and overweight are consistently associated with metabolic disorders including hyperglycemia and hyperlipidemia. Herbal medicines have been currently suggested as an alternative source of potentially useful antihyperglycemic, antihyperlipidemic, antioxidant activities. The objective of this study was to assess the in vitro inhibitory effects of eleven herbal medicines on carbohydrate and lipid digestive enzymes and the key steps of lipid digestion including the inhibition of micelle formation and the ability to bind bile acid. In addition, antioxidant activity of herbal medicines was also investigated. METHODS: α-Glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase inhibitory activities of aqueous extract of herbal medicines were measured using the enzymatic colorimetric assay. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. Antioxidant activities were assessed by using four methods including Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbance capacity ORAC), superoxide radical scavenging activity (SRSA), and hydroxyl radical scavenging activity (HRSA). RESULTS: The extracts (1 mg/mL) markedly inhibited intestinal maltase (5.16 - 44.33 %), sucrase (1.25-45.86 %), pancreatic α-amylase (1.75-12.53 %), pancreatic lipase (21.42-85.93 %), and pancreatic cholesterol esterase (2.92-53.35 %). The results showed that all extracts exhibited the inhibitory activity against pancreatic lipase with the IC50 values ranging from 0.015 to 4.259 mg/mL. In addition, the incorporation of cholesterol into micelles was inhibited by the extracts (6.64-33.74 %). The extracts also bound glycodeoxycholic acid (9.9-15.08 %), taurodeoxycholic acid (12.55-18.18 %), and taurocholic acid (11.91 - 18.4 %). Furthermore, the extracts possessed various antioxidant activities including the TEAC values (0.50 - 4.70 µmol trolox/mg dried extract), the ORAC values (9.14-44.41 µmol trolox/mg dried extract), the SRSA (0.31 - 18.82 mg trolox/mg dried extract), and the HRSA (0.05-2.29 mg trolox/mg dried extract). The findings indicated that Syzygium aromaticum, Phyllanthus amarus, Thunbergia laurifolia were the effective promising antihyperglycemic and antihyperlipidemic agents. Statistical analysis demonstrated strong positive significant correlations between the contents of phenolic compounds and % inhibition of pancreatic lipase (r = 0.885, p < 0.001), % inhibition of pancreatic cholesterol esterase (r = 0.761, p < 0.001), and the TEAC value (r = 0.840, p < 0.001). Furthermore, there was a strongly positive correlation between the TEAC value and % inhibition of pancreatic cholesterol esterase (r = 0.851, p < 0.001) and % inhibition of pancreatic lipase (r = 0.755, p < 0.001). CONCLUSIONS: Three herbal medicines including Syzygium aromaticum, Thunbergia laurifolia, and Phyllanthus amarus markedly inhibited the intestinal α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase. They also reduced formation of cholesterol micelle and bound bile acid. The findings indicate that these herbal medicines might be a promising agent for antihyperglycemic, antihyperlipidemic, and antioxidant activities.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Preparaciones de Plantas/farmacología , Plantas Medicinales/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipolipemiantes/química , Hipolipemiantes/farmacología , Páncreas/enzimología , Preparaciones de Plantas/química , Ratas , Porcinos
10.
BMC Complement Altern Med ; 15: 394, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26520793

RESUMEN

BACKGROUND: Methylglyoxal (MG) is one of the most reactive glycating agents, which result the formation of advanced glycation end-products (AGEs) that have been implicated in the progression of age-related diseases. Inhibition of MG-induced AGE formation is the imperative approach for alleviating diabetic complications. The objective of this study was to investigate the MG-trapping abilities of herbal medicines and their inhibitory activities on the formation of MG-derived AGEs. METHODS: The aqueous extract of herbal medicines was measured for the content of total phenolic compounds and the antioxidant activity by Folin-Ciocalteu assay and the 1,1-diphenyl 2-picrylhydrazyl (DPPH) radical scavenging activity, respectively. The extracts were investigated the MG-trapping ability by high performance liquid chromatography (HPLC). The extracts were incubated with BSA and MG at 37 °C for 1 day. The formation of MG-derived AGEs was measured. RESULTS: Total phenolic compounds of eleven herbal medicines showed marked variations, ranging from 12.16 to 272.36 mg gallic acid equivalents/g extract. All extracts (1 mg/mL) markedly exhibited the DPPH radical scavenging activity (0.31-73.52%) and the MG-trapping abilities (13.97-58.97%). In addition, they also inhibited the formation of MG-derived AGEs by 4.01-79.98%. The results demonstrated that Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus were the potent inhibitors against the formation of MG-derived AGEs. The positive correlations between the contents of phenolics and % MG trapping (r = 0.912, p < 0.01) and % inhibition of MG-derived AGEs (r = 0.716, p < 0.01) were observed in the study. Furthermore, there was a moderate positive correlation between % MG trapping and % inhibition of MG-derived AGEs (r =0.584, p < 0.01). CONCLUSIONS: Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus could reduce the formation of MG-derived AGEs through their MG-trapping abilities. These findings are relevant for focusing on potential herbal medicines to prevent or ameliorate AGE-mediated diabetic complications.


Asunto(s)
Acanthaceae/química , Productos Finales de Glicación Avanzada/química , Phyllanthus/química , Extractos Vegetales/química , Plantas Medicinales/química , Piruvaldehído/química , Syzygium/química , Fenoles/química
11.
BMC Complement Altern Med ; 15: 27, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25887591

RESUMEN

BACKGROUND: The accumulation of advanced glycation end products (AGEs) in body tissue has been implicated in the progression of age-related diseases. Inhibition of AGE formation is the imperative approach for alleviating diabetic complications. Clitoria ternatea extract (CTE) has been demonstrated to possess anti-diabetic activity. However, there is no scientific evidence supporting its anti-glycation activity. The objective of this study was to determine the inhibitory effect of CTE on fructose-induced formation of AGEs and protein oxidation. Antioxidant activity of CTE was also assessed by various methods. METHODS: The aqueous extract of CTE (0.25-1.00 mg/ml) was measured for the content of total phenolic compounds, flavonoid, and anthocyanin by Folin-Ciocalteu assay, AlCl3 colorimetric method, and pH differential method, respectively. The various concentrations of CTE were incubated with BSA and fructose at 37°C for 28 days. The formation of fluorescent AGEs, the level of fructosamine, protein carbonyl content, and thiol group were measured. The in vitro antioxidant activity was measured by the 1,1-diphenyl 2-picrylhydrazyl (DPPH) scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging activity (HRSA), superoxide radical scavenging activity (SRSA), and ferrous ion chelating power (FICP). RESULTS: The results demonstrated that the content of total phenolics, flavonoids and total anthocyanins in CTE was 53 ± 0.34 mg gallic acid equivalents/g dried extract, 11.2 ± 0.33 mg catechin equivalents/g dried extract, and 1.46 ± 0.04 mg cyanidin-3-glucoside equivalents/g dried extract, respectively. Moreover, CTE (0.25-1.00 mg/ml) significantly inhibited the formation of AGEs in a concentration-dependent manner. CTE also markedly reduced the levels of fructosamine and the oxidation of protein by decreasing protein carbonyl content and preventing free thiol depletion. In the DPPH radical scavenging activity and SRSA, CTE had the IC50 values of 0.47 ± 0.01 mg/ml and 0.58 ± 0.04 mg/ml. Furthermore, the FRAP and TEAC values of CTE were 0.38 ± 0.01 mmol FeSO4 equivalents/mg dried extract and 0.17 ± 0.01 mg trolox equivalents/mg dried extract. However, CTE showed weak scavenging activity on hydroxyl radical and a weak antioxidant iron chelator. CONCLUSIONS: The results showed that CTE has strong antiglycation and antioxidant properties and might have therapeutic potentials in the prevention of AGE-mediated diabetic complications.


Asunto(s)
Albúminas/metabolismo , Antioxidantes/farmacología , Clitoria/química , Fructosa/efectos adversos , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Extractos Vegetales/farmacología , Carbonilación Proteica/efectos de los fármacos , Animales , Flavonoides/análisis , Flavonoides/farmacología , Flores/química , Glicosilación , Técnicas In Vitro , Oxidación-Reducción , Fenoles/análisis , Fenoles/farmacología , Fitoterapia , Albúmina Sérica Bovina/metabolismo
12.
BMC Complement Altern Med ; 15: 242, 2015 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26187590

RESUMEN

BACKGROUND: Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. METHODS: The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. RESULTS: Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (P<0.05), improved serum lipid profiles, liver enzymes and kidney functions in diabetic rats after 14 days. The extracts also improved damage of islet of Langerhan's in diabetic rats. The plant material reduced the post-prandial glucose level (P<0.001) at the dose of 750 mg/kg. CONCLUSION: These findings revealed that both the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.


Asunto(s)
Hipoglucemiantes , Moringa/química , Extractos Vegetales , Hojas de la Planta/química , 1-Butanol , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental , Etanol , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Páncreas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Estreptozocina
13.
BMC Complement Altern Med ; 15: 346, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26438049

RESUMEN

BACKGROUND: Isoferulic acid (IFA), a naturally occurring cinnamic acid derivative, is a main active ingredient of the rhizoma of Cimicifuga dahurica. It has been shown various pharmacological activities. The aim of the study was to investigate the effect of IFA against MG-induced protein glycation and oxidative DNA damage. Free radical scavenging activity and the MGO-trapping abilities of IFA were also investigated. METHODS: The fluorescent MG-derived AGEs and non-fluorescent N(ε)-(carboxymethyl) lysine (N(ε)-CML) was measured using a spectrofluorometer and an enzyme linked immunosorbant assay (ELISA). Protein carbonyl content was used to detect protein oxidation. Gel electrophoresis was used to determine DNA damage. Superoxide anion radicals and hydroxyl radicals were determined using cytochrome c reduction assay and thiobarbituric acid reactive 2-deoxy-D-ribose oxidation products, respectively. The MG-trapping capacity was performed by HPLC. RESULTS: IFA (1.25-5 mM) inhibited the formation of fluorescent MG-derived AGEs, and N(ε)-CML, and protein carbonyl in bovine serum albumin. In addition, IFA (0.1-1 mM) also prevented MG/lysine-mediated oxidative DNA damage in the presence and absence of copper ion. The protective ability of IFA was directly correlated to inhibition of hydroxyl and superoxide anion radical generation during the reaction of MG and lysine. Most notably, IFA had no the directly trapping ability to MG. CONCLUSIONS: The present results highlighted that free radical scavenging activity, but not the MG-trapping ability, is the mechanism of IFA for preventing MG-induced protein glycation and DNA damage.


Asunto(s)
Cimicifuga/química , Cinamatos/farmacología , Daño del ADN/efectos de los fármacos , Depuradores de Radicales Libres/química , Productos Finales de Glicación Avanzada/química , Extractos Vegetales/farmacología , Piruvaldehído/farmacología , Animales , Bovinos , Cinamatos/química , Glicosilación , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/química , Piruvaldehído/química , Albúmina Sérica Bovina/química
14.
J Med Assoc Thai ; 98 Suppl 1: S91-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25764619

RESUMEN

BACKGROUND: To investigate nitrite and inducible nitric oxide synthase (iNOS) levels in the plasma and synovial fluid of patients with primary knee osteoarthritis (OA) and to determine protein nitrotyrosine in synovial tissue of OA patients. MATERIAL AND METHOD: Thirty patients and 30 healthy controls were recruited into the present study. Plasma and synovial fluid nitrite levels were measured using Griess reaction. Plasma and synovial fluid iNOS concentrations were analyzed by enzyme-linked immunosorbent assay. Nitrotyrosine was detected immunohistochemically in synovial tissue of OA patients. RESULTS: Plasma and synovial fluid nitrite concentration in the OA group were significantly higher than those in the healthy control group were (p = 0.007 and p = 0.012). Furthermore, plasma iNOS levels were significantly higher in the OA group than those in healthy control group were (p = 0.04). Moreover, nitrotyrosine was detected immunohistochemically in macrophages, synovial lining layer and synoviocytes of synovial tissue in the OA group. CONCLUSION: These findings indicate that reactive nitrogen species and nitrotyrosine-containing proteins may be involved in the joint destruction process, and play a potential role in the pathogenesis of knee osteoarthritis.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis de la Rodilla/metabolismo , Tirosina/análogos & derivados , Anciano , Estudios de Casos y Controles , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo II/sangre , Osteoartritis de la Rodilla/sangre , Osteoartritis de la Rodilla/enzimología , Líquido Sinovial/metabolismo , Tirosina/sangre , Tirosina/metabolismo , Regulación hacia Arriba
15.
J Food Sci Technol ; 52(6): 3843-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26028769

RESUMEN

Syzygium aromaticum (L.) (clove) is one of the most widely cultivated spices in many tropical countries. The aim of this study was to determine the phytochemical content, the antioxidant properties and the antiglycation properties of aqueous extract of clove against fructose-mediated protein glycation and oxidation. The result showed that the content of total phenolics and flavonoids in clove extract was 239.58 ± 0.70 mg gallic acid equivalents/g dried extract and 65.67 ± 0.01 mg catechin equivalents/g dried extract, respectively. In addition, clove exhibited antioxidant properties including DPPH radical scavenging activity (IC50 = 0.29 ± 0.01 mg/ml), Trolox equivalent antioxidant capacity (4.69 ± 0.03 µmol Trolox equivalents/mg dried extract), ferric reducing antioxidant power (20.55 ± 0.11 µmol ascorbic acid equivalents/mg dried extract), Oxygen radical absorbance capacity (31.12 ± 0.21 µmol Trolox equivalents/mg dried extract), hydroxyl radical scavenging activity (0.15 ± 0.04 mg Trolox equivalents/mg dried extract), and superoxide radical scavenging activity (18.82 ± 0.50 mg Trolox equivalents/mg dried extract). The aqueous extract of clove (0.25-1.00 mg/ml) significantly inhibited the formation of fluorescent advanced glycation end products (AGEs) and non-fluorescent AGEs (N(ɛ)-(carboxymethyl) lysine (CML)) in glycated BSA during 4 weeks of incubation. The extract also markedly prevented oxidation-induced protein damage by decreasing protein carbonyl formation and protecting against the loss of protein thiol group. These results clearly demonstrated that a polyphenol enriched clove extract, owing to its antioxidant, was capable to inhibit the formation of AGEs and protein glycation. The findings might lead to the possibility of using the clove extract for targeting diabetic complications.

16.
BMC Complement Altern Med ; 14: 130, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24708679

RESUMEN

BACKGROUND: Mesona chinensis Benth (Chinese Mesona), an economically significant agricultural plant, is the most widely consumed as an herbal beverage in Southeast Asia and China. The objective of this study was to evaluate the inhibitory activity of Mesona chinensis (MC) extract on the formation of advanced glycation end products (AGEs) and protein oxidation in an in vitro model of fructose-mediated protein glycation. METHODS: The content of total polyphenolic compounds was measured by using Folin-Ciocalteu assay. Antiglycation activity was determined using the formation of AGE fluorescence intensity, Nϵ-(carboxymethyl)lysine (CML), the level of fructosamine, and the formation of amyloid cross ß-structure. The protein oxidation was examined using the level of protein carbonyl content and thiol group. RESULTS: Our results revealed that the content of total polyphenolic compound in MC extract was 212.4 ± 5.6 mg gallic acid equivalents/g dried extract. MC extract (0.25-1.00 mg/mL) significantly inhibited the formation of fluorescence AGEs in fructose-glycated bovine serum albumin (BSA) during 4 weeks of study. Furthermore, MC extract also decreased the level of Nϵ-CML, fructosamine, and amyloid cross ß-structure in fructose-glycated BSA. While the total thiol group was elevated and the protein carbonyl content was decreased in BSA incubated with fructose and MC extract. CONCLUSIONS: The extract of MC inhibits fructose-mediated protein glycation and protein oxidation. This edible plant could be a natural rich source of antiglycation agent for preventing AGE-mediated diabetic complication.


Asunto(s)
Fructosa/química , Productos Finales de Glicación Avanzada/química , Lamiaceae/química , Extractos Vegetales/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Oxidación-Reducción , Carbonilación Proteica
17.
Nutrients ; 16(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542690

RESUMEN

The transition from adolescence to university life represents a crucial period during which dietary choices can significantly influence long-term health outcomes. While the benefits of consuming a diet rich in fruits and vegetables (FVs) are widely acknowledged, there remains a noticeable gap in research concerning the factors influencing the consumption of specific FV varieties among university students. This study aimed to investigate the factors and barriers influencing the diversity of fruit and vegetable intake among undergraduate students. A cross-sectional study involving 542 undergraduate students (with an average age of 20.6 ± 0.1 years and a body mass index of 21.3 ± 0.2 kg/m2) was conducted at Chulalongkorn University in Bangkok, Thailand, between February and September 2022. Most students showed a preference for tropical fruits with inedible peels (88.2%) and Brassicaceae vegetables (91.0%), whereas lower consumption was observed for citrus fruits (19.7%) and Fabaceae vegetables (43.7%). Sociodemographic factors and cooking methods significantly influenced FV intake, with non-consumption associated with male students, independent living, lower BMI, and advanced academic years. A lower quality of life was found to be correlated with a higher proportion of students who did not consume vegetables. Barriers to inadequate fruit intake included busy lifestyles, while taste preference emerged as the primary reason for fruit consumption. Busy lifestyles and perceived healthiness were identified as the main barriers and reasons for vegetable intake. The study highlights the importance of implementing strategies and improvements in the university environment to promote diverse FV consumption and encourage healthy dietary behaviors among students.


Asunto(s)
Frutas , Verduras , Adolescente , Humanos , Masculino , Adulto Joven , Adulto , Estudios Transversales , Factores Sociodemográficos , Calidad de Vida , Tailandia , Dieta , Estudiantes
18.
Antioxidants (Basel) ; 13(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38929180

RESUMEN

With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji berry (BGB) (Lycium ruthenicum Murr.) juice, including changes in physicochemical and functional properties, as well as microbiological and sensory attributes. Throughout the fermentation process with 2.5-10% (w/v) BGB, significantly improved probiotic viability, lactic acid production, and decreased sugar content. While total flavonoids increase, anthocyanins decrease, with no discernible change in antioxidant activities. Metabolite profiling reveals elevated phenolic compounds post-fermentation. Regarding the inhibition of lipid digestion and absorption, fermented BGB exhibits improved bile acid binding, and disrupted cholesterol micellization by approximately threefold compared to non-fermented BGB, while also increasing pancreatic lipase inhibitory activity. Furthermore, a decrease in cholesterol uptake was observed in Caco-2 cells treated with fermented BGB (0.5 mg/mL), with a maximum reduction of 16.94%. Fermented BGB also shows more potent DPP-IV inhibition. Sensory attributes are significantly improved in fermented BGB samples. These findings highlight the potential of BGB as a bioactive resource and a promising non-dairy carrier for LGG, enhancing its anti-hyperglycemic and anti-hyperlipidemic properties.

19.
Nutrients ; 16(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125265

RESUMEN

Uncarboxylated osteocalcin (ucOC) is a hormone secreted by osteoblasts that strengthens bone during mineralization and is a biomarker for ongoing bone formation. It also regulates glucose homeostasis by stimulating insulin secretion from pancreatic ß-cells. However, its effect on ß-cells under hyperglycemic diabetic conditions is unclear. The objective of this study was to investigate ucOC's effect on insulin secretion in ß-cells maintained under high glucose conditions. We hypothesized that hyperglycemia potentiates insulin secretion in response to ucOC stimulation. Using INS-1 cells, we performed insulin secretion experiments, intracellular calcium recordings, and RT-qPCR to determine ucOC's effect on glucose-stimulated insulin secretion (GSIS)-related genes. The results reveal that ucOC significantly increased insulin secretion under hyperglycemic conditions compared to lower glucose levels. High glucose conditions also potentiated the effect of ucOC on calcium signals, which enhanced insulin secretion. The increase in intracellular calcium was due to an influx from the extracellular space via voltage-dependent calcium channels (VDCCs). Interestingly, the treatment of cells with NPS-2143, a GPRC6A blocker, failed to abolish the calcium signals. Uncarboxylated osteocalcin upregulated the expression of GSIS-related genes under high glucose conditions (450 mg/dL) compared to cells under standard culture conditions (200 mg/dL). In conclusion, hyperglycemia potentiates ucOC-induced insulin secretion in ß-cells by opening VDCCs and upregulating GSIS genes. These findings provide a better understanding of ucOC's mechanism in the diabetic state and could lead to alternative treatments to stimulate insulin secretion.


Asunto(s)
Hiperglucemia , Secreción de Insulina , Células Secretoras de Insulina , Osteocalcina , Animales , Osteocalcina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Hiperglucemia/metabolismo , Ratas , Secreción de Insulina/efectos de los fármacos , Insulina/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Línea Celular , Señalización del Calcio/efectos de los fármacos
20.
Food Funct ; 15(7): 3640-3652, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38482709

RESUMEN

This study aimed to investigate the effects of gac fruit juice and its probiotic fermentation (FGJ) utilizing Lactobacillus paracasei on the modulation of the gut microbiota and the production of short-chain fatty acids (SCFAs). We conducted a comparison between FGJ, non-fermented gac juice (GJ), and control samples through in vitro digestion and colonic fermentation using the human gut microbiota derived from fecal inoculum. Our findings revealed that both GJ and FGJ led to an increase in the viability of Lactobacilli, with FGJ exhibiting even higher levels compared to the control. The results from the 16S rDNA amplicon sequencing technique showed that both GJ and FGJ exerted positive impact on the gut microbiota by promoting beneficial bacteria, notably Lactobacillus mucosae and Bacteroides vulgatus. Additionally, both GJ and FGJ significantly elevated the levels of SCFAs, particularly acetic, propionic, and n-butyric acids, as well as lactic acid, in comparison to the control. Notably, FGJ exhibited a more pronounced effect on the gut microbiota compared to GJ. This was evident in its ability to enhance species richness, reduce the Firmicutes to Bacteroidetes (F/B) ratio, promote Akkermansia, and inhibit pathogenic Escherichia coli. Moreover, FGJ displayed enhanced production of SCFAs, especially acetic and lactic acids, in contrast to GJ. Our findings suggest that the probiotic fermentation of gac fruit enhances its functional attributes in promoting a balanced gut microbiota. This beverage demonstrates potential as a functional food with potential advantages for sustaining intestinal health.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Jugos de Frutas y Vegetales , Fermentación , Ácidos Grasos Volátiles/farmacología , Frutas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA