Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 551(7682): 644-647, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29189780

RESUMEN

Since at least the last common ancestor of all life on Earth, genetic information has been stored in a four-letter alphabet that is propagated and retrieved by the formation of two base pairs. The central goal of synthetic biology is to create new life forms and functions, and the most general route to this goal is the creation of semi-synthetic organisms whose DNA harbours two additional letters that form a third, unnatural base pair. Previous efforts to generate such semi-synthetic organisms culminated in the creation of a strain of Escherichia coli that, by virtue of a nucleoside triphosphate transporter from Phaeodactylum tricornutum, imports the requisite unnatural triphosphates from its medium and then uses them to replicate a plasmid containing the unnatural base pair dNaM-dTPT3. Although the semi-synthetic organism stores increased information when compared to natural organisms, retrieval of the information requires in vivo transcription of the unnatural base pair into mRNA and tRNA, aminoacylation of the tRNA with a non-canonical amino acid, and efficient participation of the unnatural base pair in decoding at the ribosome. Here we report the in vivo transcription of DNA containing dNaM and dTPT3 into mRNAs with two different unnatural codons and tRNAs with cognate unnatural anticodons, and their efficient decoding at the ribosome to direct the site-specific incorporation of natural or non-canonical amino acids into superfolder green fluorescent protein. The results demonstrate that interactions other than hydrogen bonding can contribute to every step of information storage and retrieval. The resulting semi-synthetic organism both encodes and retrieves increased information and should serve as a platform for the creation of new life forms and functions.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Anticodón/genética , Emparejamiento Base , Escherichia coli/genética , Ingeniería Genética , ARN de Transferencia/genética , Biología Sintética/métodos , Aminoácidos/genética , Diatomeas/genética , Escherichia coli/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Enlace de Hidrógeno , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Plásmidos/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , Ribosomas/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(38): E8996-E9005, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181290

RESUMEN

Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high-fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high-fat diet-induced hepatic insulin resistance. Here, we employed a systems-level approach to uncover additional signaling pathways involved in high-fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high-fat-fed, and high-fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation. This was followed by a functional siRNA-based screen to determine which dynamically regulated phosphoproteins may be involved in canonical insulin signaling. Direct PKCε substrates were identified by motif analysis of phosphoproteomics data and validated using a large-scale in vitro kinase assay. These substrates included the p70S6K substrates RPS6 and IRS1, which suggested cross talk between PKCε and p70S6K in high-fat diet-induced hepatic insulin resistance. These results identify an expanded set of proteins through which PKCε may drive high-fat diet-induced hepatic insulin resistance that may direct new therapeutic approaches for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Animales Modificados Genéticamente , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/genética , Proteómica/métodos , ARN Interferente Pequeño/metabolismo , Ratas , Receptor de Insulina/metabolismo , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/fisiología
3.
Mol Cell ; 48(5): 713-22, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23122414

RESUMEN

Protein mistranslation causes growth arrest in bacteria, mitochondrial dysfunction in yeast, and neurodegeneration in mammals. It remains poorly understood how mistranslated proteins cause such cellular defects. Here we demonstrate that streptomycin, a bactericidal aminoglycoside that increases ribosomal mistranslation, induces transient protein aggregation in wild-type Escherichia coli. We further determined the aggregated proteome using label-free quantitative mass spectrometry. To identify genes that reduce cellular mistranslation toxicity, we selected from an overexpression library protein products that increased resistance against streptomycin and kanamycin. The selected proteins were significantly enriched in members of the oxidation-reduction pathway. Overexpressing one of these proteins, alkyl hydroperoxide reductase subunit F (a protein defending bacteria against hydrogen peroxide), but not its inactive mutant suppressed aggregated protein formation upon streptomycin treatment and increased aminoglycoside resistance. This work provides in-depth analyses of an aggregated proteome caused by streptomycin and suggests that cellular defense against hydrogen peroxide lowers the toxicity of mistranslation.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Kanamicina/farmacología , Espectrometría de Masas , Viabilidad Microbiana/efectos de los fármacos , Mutación , Estrés Oxidativo/genética , Peroxirredoxinas/biosíntesis , Peroxirredoxinas/genética , Pliegue de Proteína , Proteómica/métodos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Estreptomicina/farmacología , Factores de Tiempo
4.
Nucleic Acids Res ; 43(2): e8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378305

RESUMEN

The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination. Proteomics would be an ideal tool for these tasks, but conventional proteomic analyses cannot readily identify the extended proteins and accurately discover multiple amino acid (AA) insertions at a single UAG. To address these challenges, we created a new proteomic workflow that enabled the detection of UAG readthrough in native proteins in E. coli strains in which UAG was reassigned to encode phosphoserine. The method also enabled quantitation of NSAA and natural AA incorporation at UAG in a recombinant reporter protein. As a proof-of-principle, we measured the fidelity and purity of the phosphoserine orthogonal translation system (OTS) and used this information to improve its performance. Our results show a surprising diversity of natural AAs at reassigned stop codons. Our method can be used to improve OTSs and to quantify amino acid purity at reassigned codons in organisms with expanded genetic codes.


Asunto(s)
Aminoácidos/análisis , Codón de Terminación , Proteínas/genética , Proteómica/métodos , Aminoácidos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Factores de Terminación de Péptidos/genética , Fosfoserina/metabolismo , Biosíntesis de Proteínas , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 109(51): 21070-5, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23185002

RESUMEN

Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Bacterias/genética , Carbono/química , Código Genético , Aminoacil-ARNt Sintetasas/genética , Codón , Codón de Terminación/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Genéticos , Sistemas de Lectura Abierta , Filogenia , Biosíntesis de Proteínas , Ácido Pirúvico/metabolismo
6.
Commun Med (Lond) ; 4(1): 58, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532017

RESUMEN

BACKGROUND: Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS: A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor ßγ (IL-2Rßγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rßγ complex. RESULTS: Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION: SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.


Interleukin-2 (IL-2) is a protein that functions as a master regulator of immune responses. A key function of IL-2 is the stimulation of immune-regulatory cells that suppress autoimmune disease, which occurs when the body's immune system mistakenly attacks healthy tissues. However, therapeutic use of IL-2 is limited by its short duration of action and incomplete selectivity for immune-suppressive cells over off-target immune-stimulatory cells. We employ a platform that we have previously developed, which is a bacterial organism with an expanded DNA code, to identify a new version of IL-2, SAR444336 (SAR'336), with an extended duration of activity and increased selectivity for immune-suppressive cells. In mice and monkeys, SAR'336 was a specific activator of immune suppression, with minimal effect on immune cells that stimulate autoimmunity. Our results support further development of SAR'336 for treatment of autoimmune disorders.

7.
Nat Commun ; 12(1): 4785, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373459

RESUMEN

The implementation of applied engineering principles to create synthetic biological systems promises to revolutionize medicine, but application of fundamentally redesigned organisms has thus far not impacted practical drug development. Here we utilize an engineered microbial organism with a six-letter semi-synthetic DNA code to generate a library of site-specific, click chemistry compatible amino acid substitutions in the human cytokine IL-2. Targeted covalent modification of IL-2 variants with PEG polymers and screening identifies compounds with distinct IL-2 receptor specificities and improved pharmacological properties. One variant, termed THOR-707, selectively engages the IL-2 receptor beta/gamma complex without engagement of the IL-2 receptor alpha. In mice, administration of THOR-707 results in large-scale activation and amplification of CD8+ T cells and NK cells, without Treg expansion characteristic of IL-2. In syngeneic B16-F10 tumor-bearing mice, THOR-707 enhances drug accumulation in the tumor tissue, stimulates tumor-infiltrating CD8+ T and NK cells, and leads to a dose-dependent reduction of tumor growth. These results support further characterization of the immune modulatory, anti-tumor properties of THOR-707 and represent a fundamental advance in the application of synthetic biology to medicine, leveraging engineered semi-synthetic organisms as cellular factories to facilitate discovery and production of differentiated classes of chemically modified biologics.


Asunto(s)
Antineoplásicos/uso terapéutico , Interleucina-2/química , Interleucina-2/metabolismo , Interleucina-2/farmacología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Descubrimiento de Drogas , Ingeniería Genética , Humanos , Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Linfocitos/efectos de los fármacos , Ratones , Biología Sintética
8.
Cell Rep ; 29(11): 3394-3404.e9, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825824

RESUMEN

Pyruvate kinase is an important enzyme in glycolysis and a key metabolic control point. We recently observed a pyruvate kinase liver isoform (PKL) phosphorylation site at S113 that correlates with insulin resistance in rats on a 3 day high-fat diet (HFD) and suggests additional control points for PKL activity. However, in contrast to the classical model of PKL regulation, neither authentically phosphorylated PKL at S12 nor S113 alone is sufficient to alter enzyme kinetics or structure. Instead, we show that cyclin-dependent kinases (CDKs) are activated by the HFD and responsible for PKL phosphorylation at position S113 in addition to other targets. These CDKs control PKL nuclear retention, alter cytosolic PKL activity, and ultimately influence glucose production. These results change our view of PKL regulation and highlight a previously unrecognized pathway of hepatic CDK activity and metabolic control points that may be important in insulin resistance and type 2 diabetes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Gluconeogénesis , Hepatocitos/metabolismo , Piruvato Quinasa/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Células Cultivadas , Dieta Alta en Grasa , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Fosforilación , Piruvato Quinasa/química , Ratas , Ratas Sprague-Dawley
9.
Mol Biol Cell ; 28(2): 261-269, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27881662

RESUMEN

Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels.


Asunto(s)
Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/fisiología , Células LLC-PK1 , Mitocondrias/metabolismo , Oxígeno/metabolismo , Transporte de Proteínas/fisiología , Porcinos
10.
Nat Commun ; 6: 8130, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26350500

RESUMEN

Biochemical investigation of protein phosphorylation events is limited by inefficient production of the phosphorylated and non-phosphorylated forms of full-length proteins. Here using a genomically recoded strain of E. coli with a flexible UAG codon we produce site-specific serine- or phosphoserine-containing proteins, with purities approaching 90%, from a single recombinant DNA. Specifically, we synthesize human MEK1 kinase with two serines or two phosphoserines, from one DNA template, and demonstrate programmable kinase activity. Programmable protein phosphorylation is poised to help reveal the structural and functional information encoded in the phosphoproteome.


Asunto(s)
Codón de Terminación/genética , Escherichia coli/genética , Genoma Bacteriano/genética , MAP Quinasa Quinasa 1/genética , Fosforilación/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , MAP Quinasa Quinasa 1/biosíntesis , Organismos Modificados Genéticamente , Fosfoserina , Serina
11.
Nat Commun ; 6: 8168, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26350765

RESUMEN

Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligram quantities of human MEK1 kinase. Then, we recapitulate a physiological signalling cascade in vitro to evaluate the contributions of site-specific phosphorylation of mono- and doubly phosphorylated forms on MEK1 activity. We discover that only one phosphorylation event is necessary and sufficient for MEK1 activity. Our work sets the stage for using CFPS as a rapid high-throughput technology platform for direct expression of programmable phosphoproteins containing multiple phosphorylated residues. This work will facilitate study of phosphorylation-dependent structure-function relationships, kinase signalling networks and kinase inhibitor drugs.


Asunto(s)
Sistema Libre de Células , MAP Quinasa Quinasa 1/biosíntesis , Fosfoproteínas/biosíntesis , Fosfoserina/metabolismo , Proteínas Recombinantes/biosíntesis , Western Blotting , Pruebas de Enzimas , Escherichia coli , Proteínas Fluorescentes Verdes , Humanos , MAP Quinasa Quinasa 1/metabolismo , Espectrometría de Masas , Fosfoproteínas/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Recombinantes/metabolismo
12.
ACS Chem Biol ; 9(5): 1104-12, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24646179

RESUMEN

Adding nonstandard amino acids to the genetic code of E. coli expands the chemical and biological functional space for proteins. This is accomplished with engineered, orthogonal aminoacyl-tRNA synthetase and tRNA pairs that require a nonstandard amino acid in sufficient intracellular quantities to support protein synthesis. While cotranslational insertion of phosphoserine into proteins has been accomplished, conditions that modulate intracellular phosphoamino acid concentrations are still poorly understood. Here we used genetic and metabolic engineering to increase the free intracellular levels of phosphoserine in E. coli. We show that deletion of the phosphoserine phosphatase serB elevates the intracellular levels of phosphoserine within ranges comparable to those of standard amino acids. These new conditions improved insertion of phosphoserine into recombinant proteins. Surprisingly, we also observed dramatic increases in intracellular levels of phosphothreonine and phosphotyrosine when WT cells were grown in LB with supplemented phosphothreonine and serB deficient cells were grown in low phosphate media with supplemented phosphotyrosine, respectively. These findings remove a major barrier for further expansion of the genetic code with additional phosphorylated amino acids.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Monoéster Fosfórico Hidrolasas/genética , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Fosfotirosina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/metabolismo , Eliminación de Gen , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotirosina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
FEBS Lett ; 586(20): 3716-22, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22982858

RESUMEN

Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park et al., 2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where seven UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability.


Asunto(s)
Codón de Terminación/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Eliminación de Gen , Factores de Terminación de Péptidos/deficiencia , Factores de Terminación de Péptidos/genética , Fosfoserina/metabolismo , Biosíntesis de Proteínas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Fenotipo , Proteoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA