Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nanotechnology ; 30(17): 174001, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30641488

RESUMEN

In this work, we describe the design and the use of a novel theranostic hybrid nanocomposite made of an iron oxide core and a mesoporous silica shell (IO@MS) of ca. 30 nm coated by human serum albumin (HSA) layer for magnetic resonance imaging and drug delivery applications. The porosity of IO@MS nanoparticles was loaded with an antitumoral drug, Doxorubicin (Dox) reaching a high drug loading capacity (DLC) of 34 w%. To entrap the drug, a tight HSA coating held via isobutyramide (IBAM) binders was deposited. We show that this protein nanoassembly entraps the drugs efficiently and behaves as an innovative enzyme-sensitive gatekeeper that is degraded upon protease action. Finally we assess the Dox release in a 3D cell model via confocal imaging and its cytotoxicity is shown by growth inhibition studies on liver cancer cell spheroids.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias Hepáticas/tratamiento farmacológico , Imagen por Resonancia Magnética , Nanocompuestos/química , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Liberación de Fármacos , Compuestos Férricos/química , Humanos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Nanocompuestos/administración & dosificación , Nanoporos , Albúmina Sérica , Dióxido de Silicio/química
2.
Int J Pharm ; 635: 122654, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36720449

RESUMEN

A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.


Asunto(s)
Neoplasias de Cabeza y Cuello , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Ligandos , Factor de Crecimiento Epidérmico , Receptores ErbB/metabolismo , Nanopartículas/química , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química
3.
Pharmaceutics ; 15(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111590

RESUMEN

Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s-1·mM-1, SARMH = 580 W·g-1, SARPTT = 800 W·g-1; and r2 = 407 s-1·mM-1, SARMH = 899 W·g-1, SARPTT = 300 W·g-1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.

4.
Bioengineering (Basel) ; 9(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35324774

RESUMEN

This study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated. The results were statistically analyzed using ANOVA and multiple comparison tests (α = 0.05). The incorporation of the tested polyphenols into the epoxy resin enhanced its mechanical properties. PY demonstrated much better antioxidant and antibacterial activities than RS, which were associated with a higher release of PY. In contrast, PY showed a higher cytotoxicity than OB and OB doped with RS. OB containing PY presented a rougher surface and higher water absorption than OB doped with RS. Both tested polyphenols caused no notable changes to the overall porosity of OB. Resveratrol and pyrogallol may not only influence the morphology and mechanical properties of epoxy-resin sealers, but could also enhance antioxidant activity and antibacterial effects against Enterococcus faecalis. Most epoxy-resin sealers currently available in the market can be considered as "passive" materials. Thus, doping their composition with specific polyphenols may be a suitable strategy to confer some antibacterial properties, antioxidant potential, along with improvement of some mechanical properties.

5.
J Funct Biomater ; 14(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36662056

RESUMEN

The aim of the present in vitro study was to evaluate specific mechanical and physicochemical properties of two calcium silicate based sealers, (AH Plus Bioceramic "AHPB"; Well-Root ST "WRST"), and a conventional resin sealer (AH Plus "AHP"). These aims were accomplished by assessing the porosity, pH, compression strength, roughness, wettability and cell attachment of the tested materials. The results were compared statistically using the one-way ANOVA test. Higher pH values were obtained in both AHPB and WRST compared to AHP at 3, 24 and 72 h (p < 0.05). A greater level of porosity and wettability was detected for both AHPB and WRST compared to the resin sealer AHP (p < 0.05). Evident cell growth characterized by elongated morphology was observed on the surface of AHPB and WRST, while only a thin layer of cells was seen on the surface of AHP. A significant lower compression strength and modulus were obtained in the specimens created using AHPB compared to those made with AHP and WRST (p < 0.05). The removal of calcium silicates may be quite tricky during endodontic retreatment. In conclusion, considering the limitations of the present in vitro study, both calcium silicate sealers demonstrated good physicochemical properties. However, the lower compression strength and modulus of AHPB may facilitate its removal and make the retreatment procedures considerably easier.

6.
Nanoscale ; 6(20): 11676-80, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25163585

RESUMEN

In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing.


Asunto(s)
Imagen por Resonancia Magnética , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/química , Albúmina Sérica/química , Línea Celular Tumoral , Endocitosis , Gadolinio/química , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Sustancias Macromoleculares , Nanotecnología , Porosidad , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA