Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 13(7): e1006886, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704368

RESUMEN

Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches.


Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica/genética , Cognición , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Animales , Peso Corporal , Encéfalo/metabolismo , Encéfalo/ultraestructura , Deleción Cromosómica , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Cromosomas Humanos Par 17/genética , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Eliminación de Gen , Reordenamiento Génico , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Nucleares/metabolismo , Transmisión Sináptica/genética , Regulación hacia Arriba
2.
Eur J Neurosci ; 47(2): 164-176, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237242

RESUMEN

PSD-95 is one of the most abundant proteins of the postsynaptic density of excitatory synapses. It functions as the backbone of protein supercomplexes that mediate signalling between membrane glutamate receptors and intracellular pathways. Homozygous deletion of the Dlg4 gene encoding PSD-95 was previously found to cause a profound impairment in operant and Pavlovian conditioning in Dlg4-/- mice studied in touch screen chambers that precluded evaluation of PSD-95's role in shaping more subtle forms of learning and memory. In this study, using a battery of touch screen tests, we investigated cognitive behaviour of mice with a heterozygous Dlg4 mutation. We found that in contrast to learning deficits of Dlg4-/- mice, Dlg4+/- animals demonstrated enhanced performance in the Visual Discrimination, Visual Discrimination Reversal and Paired-Associates Learning touch screen tasks. The divergent directions of learning phenotypes observed in Dlg4-/- and Dlg4+/- mice also contrasted with qualitatively similar changes in the amplitude and plasticity of field excitatory postsynaptic potentials recorded in the CA1 area of hippocampal slices from both mutants. Our results have important repercussions for the studies of genetic models of human diseases, because they demonstrate that reliance on phenotypes observed solely in homozygous mice may obscure qualitatively different changes in heterozygous animals and potentially weaken the validity of translational comparisons with symptoms seen in heterozygous human carriers.


Asunto(s)
Región CA1 Hipocampal/fisiología , Cognición , Homólogo 4 de la Proteína Discs Large/genética , Potenciales Postsinápticos Excitadores , Heterocigoto , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Condicionamiento Clásico , Homólogo 4 de la Proteína Discs Large/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/fisiología
3.
Hum Mol Genet ; 22(5): 852-66, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23175442

RESUMEN

Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS. In agreement with the cognitive disturbances observed in patients with KS, we detected deficits in fear extinction learning and both novel and spatial object recognition in Ehmt1(+/-) mice. These learning and memory deficits were associated with a significant reduction in dendritic arborization and the number of mature spines in hippocampal CA1 pyramidal neurons of Ehmt1(+/-) mice. In-depth analysis of the electrophysiological properties of CA3-CA1 synapses revealed no differences in basal synaptic transmission or theta-burst induced long-term potentiation (LTP). However, paired-pulse facilitation (PPF) was significantly increased in Ehmt1(+/-) neurons, pointing to a potential deficiency in presynaptic neurotransmitter release. Accordingly, a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) was observed in Ehmt1(+/-) neurons. These data demonstrate that Ehmt1 haploinsufficiency in mice leads to learning deficits and synaptic dysfunction, providing a possible mechanism for the ID phenotype in patients with KS.


Asunto(s)
Anomalías Craneofaciales/genética , Cardiopatías Congénitas/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Aprendizaje , Animales , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Discapacidad Intelectual/fisiopatología , Ratones , Ratones Noqueados , Células Piramidales/patología , Sinapsis/patología
4.
J Neurosci ; 32(40): 13987-99, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035106

RESUMEN

Traf2 and NcK interacting kinase (TNiK) contains serine-threonine kinase and scaffold domains and has been implicated in cell proliferation and glutamate receptor regulation in vitro. Here we report its role in vivo using mice carrying a knock-out mutation. TNiK binds protein complexes in the synapse linking it to the NMDA receptor (NMDAR) via AKAP9. NMDAR and metabotropic receptors bidirectionally regulate TNiK phosphorylation and TNiK is required for AMPA expression and synaptic function. TNiK also organizes nuclear complexes and in the absence of TNiK, there was a marked elevation in GSK3ß and phosphorylation levels of its cognate phosphorylation sites on NeuroD1 with alterations in Wnt pathway signaling. We observed impairments in dentate gyrus neurogenesis in TNiK knock-out mice and cognitive testing using the touchscreen apparatus revealed impairments in pattern separation on a test of spatial discrimination. Object-location paired associate learning, which is dependent on glutamatergic signaling, was also impaired. Additionally, TNiK knock-out mice displayed hyperlocomotor behavior that could be rapidly reversed by GSK3ß inhibitors, indicating the potential for pharmacological rescue of a behavioral phenotype. These data establish TNiK as a critical regulator of cognitive functions and suggest it may play a regulatory role in diseases impacting on its interacting proteins and complexes.


Asunto(s)
Aprendizaje por Asociación/fisiología , Trastornos del Conocimiento/enzimología , Giro Dentado/enzimología , Aprendizaje Discriminativo/fisiología , Proteínas del Tejido Nervioso/fisiología , Densidad Postsináptica/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Detección de Señal Psicológica/fisiología , Percepción Espacial/fisiología , Animales , Núcleo Celular/enzimología , Trastornos del Conocimiento/fisiopatología , Giro Dentado/patología , Ácido Glutámico/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/deficiencia , Neurogénesis/fisiología , Fenotipo , Fosforilación , Densidad Postsináptica/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/fisiología
5.
Pharmacol Rep ; 70(4): 777-783, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29940508

RESUMEN

BACKGROUND: Synaptic Ras-GTPase-activating protein 1 (SYNGAP1) is an abundant brain-specific protein localized at the postsynaptic density of mammalian excitatory synapses. SYNGAP1 functions as a crucial regulator of downstream intracellular signaling triggered by N-methyl-d-aspartate receptor activation. One of the most important signaling pathways regulated by SYNGAP1 is the Ras-Raf-MEK-ERK pathway. SYNGAP1 deficiency is associated with hyperphosphorylation of MEK and ERK kinases and with altered synaptic function in Syngap1+/- mice. Loss-of-function mutations in the SYNGAP1 gene have been documented in many human cognitive and neurological disorders. However, there are currently no approaches that reverse the phenotypes of SYNGAP1 deficiency. METHODS: Using electrophysiological recordings of field responses in hippocampal slices, we examined if disturbances of synaptic physiology in the hippocampus of 7-8-month old Syngap1+/- mice were sensitive to the effect of the MEK inhibitor PD-0325901 given orally for 6days. RESULTS: We found that in hippocampal slices from vehicle-treated Syngap1+/- mice, basal synaptic responses were higher and their long-term potentiation (LTP) was lower than in slices from wild-type littermates. Chronic administration of PD-0325901 normalized basal synaptic responses, but did not reverse LTP deficit. CONCLUSIONS: The differential sensitivity of basal synaptic transmission and LTP to MEK inhibition indicates that the effects of SYNGAP1 deficiency on these synaptic parameters are mediated by distinct pathways. Our findings also suggest that at least some physiological phenotypes of the germline Syngap1 mutation can be ameliorated by pharmacological treatment of adult animals.


Asunto(s)
Benzamidas/farmacología , Difenilamina/análogos & derivados , Hipocampo/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Proteínas Activadoras de ras GTPasa/deficiencia , Animales , Difenilamina/farmacología , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Mutación , Proteínas Activadoras de ras GTPasa/genética
6.
BMC Neurosci ; 7: 61, 2006 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-16942609

RESUMEN

BACKGROUND: Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. RESULTS: Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5x of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. CONCLUSION: Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting several experiments on a multiplexed platform which could be useful for efficient screening of novel transgenic mice.


Asunto(s)
Electrofisiología/instrumentación , Electrofisiología/métodos , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Estimulación Eléctrica/métodos , Electrodos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Fenotipo , Receptores de N-Metil-D-Aspartato/fisiología , Especificidad de la Especie
7.
Nat Neurosci ; 16(1): 25-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23201971

RESUMEN

Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C-terminal domains (CTDs). To identify shared ancestral functions and diversified subunit-specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock-in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit-specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long-term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 genes.


Asunto(s)
Conducta Animal/fisiología , Citoplasma/metabolismo , Evolución Molecular , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Animales , Biofisica , Estimulación Eléctrica , Embrión de Mamíferos , Células Madre Embrionarias , Emociones/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Humanos , Inmunoprecipitación , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Motivación/genética , Actividad Motora/genética , Mutación/genética , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Técnicas de Placa-Clamp , Fenotipo , Estructura Terciaria de Proteína/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/efectos de los fármacos , Sinapsis/genética
8.
J Biol Chem ; 283(49): 34101-7, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18815127

RESUMEN

The postsynaptic N-methyl-d-aspartate (NMDA) receptor activates multiple kinases and changes the phosphorylation of many postsynaptic proteins organized in signaling networks. Because the NMDA receptor is known to regulate gene expression, it is important to examine whether networks of kinases control signaling to gene expression. We examined the requirement of multiple kinases and NMDA receptor-interacting proteins for gene expression in mouse hippocampal slices. Protocols that induce long-term depression (LTD) and long-term potentiation (LTP) activated common kinases and overlapping gene expression profiles. Combinations of kinases were required for induction of each gene. Distinct combinations of kinases were required to up-regulate Arc, Npas4, Egr2, and Egr4 following either LTP or LTD protocols. Consistent with the combinatorial data, a mouse mutant model of the human cognition disease gene SAP102, which couples ERK kinase to the NMDA receptor, showed deregulated expression of specific genes. These data support a network model of postsynaptic integration where kinase signaling networks are recruited by differential synaptic activity and control both local synaptic events and activity-dependent gene expression.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Encéfalo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciación a Largo Plazo , Ratones , Modelos Biológicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Transducción de Señal , Sinapsis/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA