Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phytopathology ; 109(4): 659-669, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30256186

RESUMEN

Potato cyst nematodes (PCN) are damaging soilborne quarantine pests of potato in many parts of the world. There are two recognized species, Globodera pallida and G. rostochiensis, with only the latter species-the golden cyst nematode-present in Australia. PCN was first discovered in Australia in 1986 in Western Australia, where it was subsequently eradicated and area freedom for market access was reinstated. In Victoria, PCN was first detected in 1991 east of Melbourne. Since then, it has been found in a small number of localized regions to the south and east. Strict quarantine controls have been in place since each new detection. It has previously been speculated that there were multiple separate introductions of PCN into Victoria. Our study utilized a historic (years 2001 to 2014) PCN cyst reference collection to examine genetic variability of Victorian PCN populations to investigate potential historical origins and subsequent changes in the populations that might inform patterns of spread. DNA was extracted from single larvae dissected from eggs within cysts and screened using nine previously described polymorphic microsatellite markers in two multiplex polymerase chain reaction assays. Sequence variation of the internal transcribed spacer region of the DNA was also assessed and compared with previously published data. A hierarchical sampling strategy was used, comparing variability of larvae within cysts, within paddocks, and between local regions. This sampling revealed very little differentiation between Victorian populations, which share the same microsatellite allelic variation, with differences between local regions probably reflecting changes in allele frequencies over time. Our molecular assessment supports a probable single localized introduction into Victoria followed by limited spread to nearby areas. The Australian PCN examined appear genetically distinct from populations previously sampled worldwide; thus, any new exotic incursions, potentially bringing in additional PCN pathotypes, should be easily differentiated from existing established local PCN populations.


Asunto(s)
Tylenchoidea , Animales , Filogeografía , Enfermedades de las Plantas , Solanum tuberosum , Tylenchoidea/genética , Victoria , Australia Occidental
2.
Sci Rep ; 13(1): 10895, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407637

RESUMEN

Diaphorina citri Kuwayama, also known as the Asian citrus psyllid (ACP), can vector the bacterium Candidatus Liberibacter asiaticus (CLas), agent of Huanglongbing (HLB): an incurable disease affecting citrus trees worldwide. In citrus growing regions where ACP and HLB are absent, such as Australia, the risk of an incursion and consequent economic damage to citrus industries make this psyllid one of the top-priority pests. Due to ACP's small dimensions and the generally poorly studied native psylloid fauna worldwide, morphological identification of this insect to distinguish it from harmless species is challenging, especially in the field, and with immature, partial or damaged specimens. To allow rapid and efficient detection of ACP in the field, we designed and optimised a new Loop-mediated isothermal amplification (LAMP) assay for the detection of D. citri based on the mitochondrial 16S locus. The optimised ACP 16S LAMP assay produced amplification from D. citri samples within 13.3 ± 3.6 min, with an anneal derivative of ~ 78.5 °C. A synthetic gBlock gene fragment was also developed to be used as positive control for the new LAMP assay with a different anneal derivative of ~ 83 °C. An existing commercially available LAMP assay for detection of the bacterium CLas was also tested in this study on ACP DNA. The ACP 16S LAMP assay we developed and tested here provides a valuable new in-field compatible tool that can allow early detections of ACP, enabling a quick biosecurity response, and could potentially be adopted by a wide range of users, from farmers to agronomists and from researchers to industry.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Hemípteros/microbiología , Citrus/microbiología , Rhizobiaceae/genética , Enfermedades de las Plantas/microbiología , Liberibacter
3.
Sci Rep ; 13(1): 11931, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488147

RESUMEN

Varroa mites are serious pests of European honeybees (Apis mellifera). For detection of Varroa mite, a new molecular LAMP-based assay has been developed, which retains the body of the mite intact for morphological identification. Six novel Varroa LAMP primers were designed from existing DNA sequences of the COI locus to target V. destructor and V. jacobsoni, providing the ability to tell them apart from other non-target beehive associated mite and insect species. This LAMP assay is specific in detecting these Varroa species and has been tested on specimens originating from multiple countries. It produces amplification of V. destructor and V. jacobsoni in 16 ± 3.4 min with an anneal derivative of 78 ± 0.5 °C whilst another Varroa species,V. underwoodi, showed late amplification. A gBlock gene fragment, used here as a positive control has a different anneal derivative of 80 °C. Three non-destructive DNA extraction methods (HotShot, QuickExtract and Xtract) were tested and found to be suitable for use in the field. The LAMP assay was sensitive to very low levels of Varroa DNA, down to 0.24 picogram (~ 1 × 10 copies/µL of Varroa gBlock). This is a new molecular tool for rapid and accurate detection and identification of Varroa mites for pest management, in areas where these mites do not occur.


Asunto(s)
Varroidae , Animales , Abejas , Bioensayo , Cartilla de ADN
4.
PLoS One ; 18(2): e0281759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36791141

RESUMEN

Insect identification and preservation of voucher specimens is integral to pest diagnostic and surveillance activities; yet bulk-trapped insects are a diagnostic challenge due to high catch numbers and the susceptibility of samples to environmental damage. Many insect trap catches rely on examination of morphological characters for species identifications, which is a time consuming and highly skilled task, hence there is a need for more efficient molecular approaches. Many bulk DNA extraction methods require destructive sampling of specimens, resulting in damaged, or fully destroyed, voucher specimens. We developed an inexpensive, rapid, bulk DNA isolation method that preserves specimens as pinned vouchers to a standard that allows for post-extraction morphological examination and inclusion in insect reference collections. Our protocol was validated using a group of insects that are time-consuming to identify when trapped in large numbers-the dacine fruit flies (Diptera: Tephritidae: Dacinae). In developing our method, we evaluated existing protocols against the following criteria: effect on morphology; suitability for large trap catches; cost; ease of handling; and application to downstream molecular diagnostic analyses such as real-time PCR and metabarcoding. We found that the optimum method for rapid isolation of DNA extraction was immersing flies in a NaOH:TE buffer at 75°C for 10 minutes, without the need for proteinase K or detergents. This HotSOAK method produced sufficient high-quality DNA whilst preserving morphological characters suitable for species-level identification with up to 20,000 flies in a sample. The lysates performed well in down-stream analyses such as loop-mediated isothermal amplification (LAMP) and real-time PCR applications, while for metabarcoding PCR the lysate required an additional column purification step. Development of this method is a key step required for upscaling our capacity to accurately detect insects captured in bulk traps, whether for biodiversity, biosecurity, or pest management objectives.


Asunto(s)
Insectos , Tephritidae , Animales , Análisis Costo-Beneficio , Insectos/genética , Tephritidae/genética , Drosophila/genética , ADN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Sci Rep ; 12(1): 1116, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064176

RESUMEN

Fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is a highly polyphagous invasive plant pest that has expanded its global geographic distribution, including recently into much of Australia. Rapid diagnostic tests are required for identification of FAW to assist subsequent management and control. We developed a new loop-mediated isothermal amplification (LAMP) assay based on the mitochondrial cytochrome c oxidase subunit I (COI) gene for accurate and timely diagnosis of FAW in the field. The specificity of the new assay was tested against a broad panel of twenty non-target noctuids, including eight other Spodoptera species. Only S. frugiperda samples produced amplification within 20 min, with an anneal derivative temperature of 78.3 ± 0.3 °C. A gBlock dsDNA fragment was developed and trialled as a synthetic positive control, with a different anneal derivative of 81 °C. The new FAW LAMP assay was able to detect FAW DNA down to 2.4 pg, similar to an existing laboratory-based real-time PCR assay. We also trialled the new FAW assay with a colorimetric master mix and found it could successfully amplify positive FAW samples in half the time compared to an existing FAW colorimetric LAMP assay. Given the high sensitivity and rapid amplification time, we recommend the use of this newly developed FAW LAMP assay in a portable real-time fluorometer for in-field diagnosis of FAW.


Asunto(s)
Especies Introducidas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Plantas/parasitología , Spodoptera/genética , Animales , Complejo IV de Transporte de Electrones/genética , Proteínas de Insectos/genética , Larva , Spodoptera/enzimología
6.
Sci Rep ; 12(1): 12602, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871253

RESUMEN

The cue-lure-responding New Guinea fruit fly, Bactrocera trivialis, poses a biosecurity risk to neighbouring countries, e.g., Australia. In trapping programs, lure caught flies are usually morphologically discriminated from non-target species; however, DNA barcoding can be used to confirm similar species where morphology is inconclusive, e.g., Bactrocera breviaculeus and B. rufofuscula. This can take days-and a laboratory-to resolve. A quicker, simpler, molecular diagnostic assay would facilitate a more rapid detection and potential incursion response. We developed LAMP assays targeting cytochrome c oxidase subunit I (COI) and Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L); both assays detected B. trivialis within 25 min. The BtrivCOI and BtrivEIF3L assay anneal derivatives were 82.7 ± 0.8 °C and 83.3 ± 1.3 °C, respectively, detecting down to 1 × 101 copies/µL and 1 × 103 copies/µL, respectively. Each assay amplified some non-targets from our test panel; however notably, BtrivCOI eliminated all morphologically similar non-targets, and combined, the assays eliminated all non-targets. Double-stranded DNA gBlocks were developed as positive controls; anneal derivatives for the COI and EIF3L gBlocks were 84.1 ± 0.7 °C and 85.8 ± 0.2 °C, respectively. We recommend the BtrivCOI assay for confirmation of suspect cue-lure-trapped B. trivialis, with BtrivEIF3L used for secondary confirmation when required.


Asunto(s)
Tephritidae , Animales , Australia , Drosophila , Técnicas de Diagnóstico Molecular , Nueva Guinea , Técnicas de Amplificación de Ácido Nucleico , Tephritidae/genética
7.
Pest Manag Sci ; 77(12): 5509-5521, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34363302

RESUMEN

BACKGROUND: Khapra beetle (Trogoderma granarium Everts) is a significant pest of food products around the world, causing great losses of stored grain and produce, with export restrictions imposed on countries with established beetle populations. Khapra beetle is a high-priority exotic invertebrate pest in many countries requiring a rapid quarantine/biosecurity response when incursions occur. To address this, we developed a novel Khapra LAMP (loop-mediated isothermal amplification) assay using a portable real-time fluorometer and an additional 18S ribosomal DNA (18S) insect control LAMP assay for confirmation of the presence of insect DNA. Both LAMP tests can be performed either in a portable real-time fluorometer or using simple, visual colorimetric technique. RESULTS: Both the Khapra and 18S LAMP tests amplify positive samples within ≤ 25 min, with an anneal derivative temperature of 77.7 ± 0.7 °C for Khapra LAMP test and 88.0 ± 1.0 °C for 18S. The new Khapra LAMP assay is sensitive to very low levels of DNA (1.02 × 10-6  ng µL-1 ). Additionally, we developed a gBlock double stranded DNA fragment for use as positive Khapra control with a different anneal derivative of 80 °C. Both assays are simple to use in the field and are capable of amplifying DNA from target beetles, even when samples are partially degraded which is typically found during surveillance activities. By screening a broad panel of Dermestidae species we demonstrate that our new assay is species-specific, with no detections of false positives. Also, we evaluated multiple DNA extraction methods, with both QuickExtract and HotSHOT extraction methods proving suitable for in-field use. CONCLUSION: The novel Khapra and 18S LAMP assays should improve speed, accuracy and confidence of detection of Khapra beetle at incursion points and aid rapid biosecurity responses in any country affected, especially as the assays described here are portable and easy to implement in the field conditions where resources are limited. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Control de Insectos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico
8.
Sci Rep ; 10(1): 21229, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277555

RESUMEN

Grape phylloxera (Daktulosphaira vitifoliae) is a destructive insect pest of grapevines that is highly invasive worldwide, despite strict biosecurity containment measures in place at farm and regional levels. Current phylloxera identification by visual inspection and laboratory-based molecular methods is time-consuming and costly. More rapid and cost-effective methods for identification of this pest would benefit industry, growers, and biosecurity services. Loop mediated isothermal amplification (LAMP) is a new portable technology available for rapid and accurate in-field molecular diagnostics. This study outlines the development of a new LAMP assay to enable the identification of phylloxera specimens. New LAMP primers were developed to specifically amplify phylloxera mitochondrial DNA (5'-COI), which we have shown is effective as a DNA barcode for identification of phylloxera, using LAMP technology. Positive LAMP reactions, containing phylloxera DNA, amplified in less than twelve minutes with an anneal derivative temperature of approximately 79 °C to 80 °C compared to a newly designed synthetic DNA (gBlock) fragment which had an anneal derivative temperature of 82 °C. No LAMP amplification was detected in any of the non-target species tested, i.e. no false-positive identification resulted for these species. We also successfully optimised a non-destructive DNA extraction procedure, HotSHOT "HS6", for use in the field on phylloxera adults, nymphs and eggs, to retain physical specimens. DNA extracted using this method was also suitable for species and genotype molecular identification methods, such as DNA barcoding, qPCR and microsatellite genotyping. The new LAMP assay provides a novel visual molecular tool for accurate diagnostics of phylloxera in the laboratory and field.


Asunto(s)
Áfidos/genética , ADN Mitocondrial/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Vitis/parasitología , Animales , Áfidos/patogenicidad , Cartilla de ADN , Genotipo , Repeticiones de Microsatélite/genética , Sensibilidad y Especificidad
9.
Sci Rep ; 10(1): 9554, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533005

RESUMEN

LAMP assays are targeted molecular tests for the rapid detection of species in the laboratory and field. We developed a LAMP assay for an economically important fruit fly species, Queensland fruit fly, Bactrocera tryoni. This assay was assessed against a broad panel of target and non-target species and found to be specific, only amplifying the target species and closest relatives, in a portable real-time fluorometer (Genie III) in under 15 minutes with an anneal derivative temperature of 82.5 oC. The assay is sensitive to low levels of target DNA (>0.016 ng/µl), performing equally to the existing qPCR test. To enable retention of a physical voucher specimen, for potential morphological confirmation of LAMP results, a novel whole-specimen non-destructive DNA extraction method was developed, suitable for LAMP in the field. The stability of DNA extraction and LAMP reagents was tested under simulated and actual field conditions and shown to be robust. Our new assay now provides a portable molecular tool for the detection of this significant tephritid fruit fly pest species of biosecurity/quarantine concern. This has already proven invaluable for in-field diagnostics, providing real-time support influencing immediate actions, with negative results allowing the release of fruit produce, and positive results initiating fruit fly control measures.


Asunto(s)
Bioensayo/métodos , Tephritidae/genética , Animales , Cuarentena/métodos , Especificidad de la Especie
10.
Funct Plant Biol ; 38(6): 462-478, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480901

RESUMEN

Microarray analysis was used to investigate changes in host gene expression during the primary stages of the interaction between the susceptible plant Arabidopsis thaliana (L.) Heynh ecotype Col-0 and the biotrophic pathogen Plasmodiophora brassicae Woronin. Analyses were conducted at 4, 7 and 10 days after inoculation (DAI) and revealed significant induction or suppression of a relatively low number of genes in a range of functional categories. At 4 DAI, there was induced expression of several genes known to be critical for pathogen recognition and signal transduction in other resistant host-pathogen interactions. As the pathogen further colonised root tissue and progressed through the primary plasmodium stage to production of zoosporangia at 7 and 10 DAI, respectively, fewer genes showed changes in expression. The microarray results were validated by examining a subset of induced genes at 4 DAI by quantitative real-time reverse transcriptase PCR (RT-qPCR) analysis all of which correlated positively with the microarray data. The two A. thaliana mutants jar1 and coiI tested were found to be susceptible to P. brassicae. The involvement of defence-related hormones in the interaction was further investigated and the findings indicate that addition of salicylic acid can suppress clubroot disease in A. thaliana plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA