Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 44(6): 1379-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27287409

RESUMEN

Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Sistema Respiratorio/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Reacciones Cruzadas , Epítopos de Linfocito T/inmunología , Humanos , Inmunidad , Memoria Inmunológica , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos , Vacunación , Virión/inmunología
3.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29540599

RESUMEN

Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Células Vero , Zoonosis/prevención & control , Zoonosis/virología
4.
Proc Natl Acad Sci U S A ; 113(11): 3048-53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976607

RESUMEN

Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.


Asunto(s)
Quirópteros/virología , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronaviridae/virología , Coronaviridae/patogenicidad , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células Cultivadas , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/inmunología , Coronaviridae/aislamiento & purificación , Coronaviridae/fisiología , Infecciones por Coronaviridae/prevención & control , Infecciones por Coronaviridae/transmisión , Infecciones por Coronaviridae/veterinaria , Reacciones Cruzadas , Encefalitis Viral/virología , Células Epiteliales/virología , Especificidad del Huésped , Humanos , Pulmón/citología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Modelos Moleculares , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/fisiología , Mutación Puntual , Conformación Proteica , Receptores Virales/genética , Receptores Virales/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero , Replicación Viral , Zoonosis
5.
Proc Natl Acad Sci U S A ; 112(33): 10473-8, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26216974

RESUMEN

Middle East Respiratory Syndrome (MERS) is a highly lethal pulmonary infection caused by a previously unidentified coronavirus (CoV), likely transmitted to humans by infected camels. There is no licensed vaccine or antiviral for MERS, therefore new prophylactic and therapeutic strategies to combat human infections are needed. In this study, we describe, for the first time, to our knowledge, the isolation of a potent MERS-CoV-neutralizing antibody from memory B cells of an infected individual. The antibody, named LCA60, binds to a novel site on the spike protein and potently neutralizes infection of multiple MERS-CoV isolates by interfering with the binding to the cellular receptor CD26. Importantly, using mice transduced with adenovirus expressing human CD26 and infected with MERS-CoV, we show that LCA60 can effectively protect in both prophylactic and postexposure settings. This antibody can be used for prophylaxis, for postexposure prophylaxis of individuals at risk, or for the treatment of human cases of MERS-CoV infection. The fact that it took only 4 mo from the initial screening of B cells derived from a convalescent patient for the development of a stable chinese hamster ovary (CHO) cell line producing neutralizing antibodies at more than 5 g/L provides an example of a rapid pathway toward the generation of effective antiviral therapies against emerging viruses.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Memoria Inmunológica , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Sitios de Unión , Células CHO , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Cricetinae , Cricetulus , Dipeptidil Peptidasa 4/química , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales
6.
Proc Natl Acad Sci U S A ; 111(13): 4970-5, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24599590

RESUMEN

In this era of continued emergence of zoonotic virus infections, the rapid development of rodent models represents a critical barrier to public health preparedness, including the testing of antivirus therapy and vaccines. The Middle East respiratory syndrome coronavirus (MERS-CoV) was recently identified as the causative agent of a severe pneumonia. Given the ability of coronavirus to rapidly adapt to new hosts, a major public health concern is that MERS-CoV will further adapt to replication in humans, triggering a pandemic. No small-animal model for this infection is currently available, but studies suggest that virus entry factors can confer virus susceptibility. Here, we show that mice were sensitized to MERS-CoV infection by prior transduction with adenoviral vectors expressing the human host-cell receptor dipeptidyl peptidase 4. Mice developed a pneumonia characterized by extensive inflammatory-cell infiltration with virus clearance occurring 6-8 d after infection. Clinical disease and histopathological changes were more severe in the absence of type-I IFN signaling whereas the T-cell response was required for virus clearance. Using these mice, we demonstrated the efficacy of a therapeutic intervention (poly I:C) and a potential vaccine [Venezuelan equine encephalitis replicon particles expressing MERS-CoV spike protein]. We also found little protective cross-reactivity between MERS-CoV and the severe acute respiratory syndrome-CoV. Our results demonstrate that this system will be useful for MERS-CoV studies and for the rapid development of relevant animal models for emerging respiratory viral infections.


Asunto(s)
Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Infecciones del Sistema Respiratorio/virología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/virología , Coronavirus/inmunología , Coronavirus/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Reacciones Cruzadas/inmunología , Humanos , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Medio Oriente , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Síndrome Respiratorio Agudo Grave/inmunología , Transducción de Señal/inmunología
7.
Proc Natl Acad Sci U S A ; 111(19): E2018-26, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778221

RESUMEN

The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , Antivirales/aislamiento & purificación , Evolución Biológica , Enfermedades Transmisibles Emergentes/tratamiento farmacológico , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/mortalidad , Coronavirus/genética , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Dipeptidil Peptidasa 4/inmunología , Células HEK293 , Humanos , Inmunoglobulina G/inmunología , Datos de Secuencia Molecular , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/tratamiento farmacológico , Zoonosis/inmunología , Zoonosis/mortalidad
8.
J Nanosci Nanotechnol ; 16(7): 7720-7730, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27547159

RESUMEN

Noroviruses (NoV) are the leading cause of nonbacterial gastroenteritis in humans, and replicate extensively in the human gastrointestinal (GI) tract. Silica (also known as silicon dioxide, SiO2) nanoparticles (NPs) used in processed foods, dairy products, and beverages also accumulate in the GI tract. We investigated the effect of silica NPs on NoV replication and host cell response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.7 murine macrophages. Pretreatment with 10 µg/ml silica significantly reduced the viability of macrophages, but no cumulative effects on viability of macrophages were observed with MNV-1 infection. No difference was observed between exposure to control or silica NPs on either the quantity of viral genome copies or the production of infectious virus in macrophages infected with MNV-1. Silica NPs reduced the ability of macrophages to upregulate genes encoding bone morphogenic proteins (BMPs), chemokine ligands and cytokines for which expression levels were otherwise found to be upregulated in response to MNV-1 infection. Furthermore, silica NPs reduced the levels of proinflammatory cytokines secreted by macrophages in response to MNV infection. Finally, silica NPs with MNV-1 infection produced a genotoxic insult to macrophages. Strikingly, this genotoxic insult was also found to occur as a synergistic effect of silica NPs and feline calicivirus infection in feline kidney epithelial cells. Taken together, our study suggests important safety considerations related to reducing exposure to silica NPs affecting the GI tract in individuals infected with NoVs and possibly other foodborne viruses.

9.
Proc Natl Acad Sci U S A ; 110(40): 16157-62, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043791

RESUMEN

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Coronavirus/genética , ADN Complementario/genética , Síndrome Respiratorio Agudo Grave/virología , Northern Blotting , Western Blotting , Células Cultivadas , Cartilla de ADN/genética , Dipeptidil Peptidasa 4/metabolismo , Regulación Viral de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/fisiología , Humanos , Proteínas Luminiscentes , Medio Oriente , Polimorfismo de Longitud del Fragmento de Restricción , Reacción en Cadena en Tiempo Real de la Polimerasa , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Acoplamiento Viral , Replicación Viral/fisiología , Proteína Fluorescente Roja
10.
J Virol ; 88(9): 5195-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574399

RESUMEN

Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.


Asunto(s)
Coronavirus/fisiología , Dipeptidil Peptidasa 4/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Animales , Infecciones por Coronavirus/virología , Análisis Mutacional de ADN , Especificidad del Huésped , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Especificidad de la Especie
11.
J Virol ; 88(8): 4251-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24478444

RESUMEN

UNLABELLED: The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2'-O-methyltransferase (2'-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2'-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2'-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2'-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2'-O-MTase activity to subvert the immune system. IMPORTANCE: Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2'-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2'-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections.


Asunto(s)
Metiltransferasas/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Helicasa Inducida por Interferón IFIH1 , Masculino , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Proteínas de Unión al ARN , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral
12.
J Virol ; 88(20): 11825-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100850

RESUMEN

To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR(-/-)) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities. Importance: Evaluating viral protease inhibitors in a small-animal model is a critical step in the path toward antiviral drug development. We modified a biosafety level 2 chimeric virus system to facilitate evaluation of inhibitors directed against highly pathogenic coronaviruses. We used this system to demonstrate the in vivo efficacy of an inhibitor of the papain-like protease of severe acute respiratory syndrome coronavirus. Furthermore, we demonstrate that the chimeric-virus system can be adapted to study the proteases of emerging human pathogens, such as Middle East respiratory syndrome coronavirus. This system provides an important tool to rapidly assess the efficacy of protease inhibitors targeting existing and emerging human pathogens, as well as other enzymes capable of removing ISG15 from cellular proteins.


Asunto(s)
Coronavirus/fisiología , Modelos Animales de Enfermedad , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Chlorocebus aethiops , Coronavirus/enzimología , Cricetinae , Ratones , Células Vero
13.
J Infect Dis ; 209(7): 995-1006, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24253287

RESUMEN

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs. METHODS: Using synthetic genomics and Venezuelan equine encephalitis virus replicons (VRPs) expressing spike and nucleocapsid proteins from MERS-CoV and other human and bat CoVs, we characterize the antigenic responses (using Western blot and enzyme-linked immunosorbent assay) and serologic responses (using neutralization assays) against 2 MERS-CoV isolates in comparison with those of other human and bat CoVs. RESULTS: Serologic and neutralization responses against the spike glycoprotein were primarily strain specific, with a very low level of cross-reactivity within or across subgroups. CoV N proteins within but not across subgroups share cross-reactive epitopes with MERS-CoV isolates. Our findings were validated using a convalescent-phase serum specimen from a patient infected with MERS-CoV (NA 01) and human antiserum against SARS-CoV, human CoV NL63, and human CoV OC43. CONCLUSIONS: Vaccine design for emerging CoVs should involve chimeric spike protein containing neutralizing epitopes from multiple virus strains across subgroups to reduce immune pathology, and a diagnostic platform should include a panel of nucleocapsid and spike proteins from phylogenetically distinct CoVs.


Asunto(s)
Antígenos Virales/inmunología , Coronaviridae/inmunología , Proteínas de la Nucleocápside/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Western Blotting , Quirópteros , Coronaviridae/aislamiento & purificación , Proteínas de la Nucleocápside de Coronavirus , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Pruebas de Neutralización
14.
BMC Genomics ; 15: 1161, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25534508

RESUMEN

BACKGROUND: The recent emergence of a novel coronavirus in the Middle East (designated MERS-CoV) is a reminder of the zoonotic and pathogenic potential of emerging coronaviruses in humans. Clinical features of Middle East respiratory syndrome (MERS) include atypical pneumonia and progressive respiratory failure that is highly reminiscent of severe acute respiratory syndrome (SARS) caused by SARS-CoV. The host response is a key component of highly pathogenic respiratory virus infection. Here, we computationally analyzed gene expression changes in a human airway epithelial cell line infected with two genetically distinct MERS-CoV strains obtained from human patients, MERS-CoV SA 1 and MERS-CoV Eng 1. RESULTS: Using topological techniques, including persistence homology and filtered clustering, we performed a comparative transcriptional analysis of human Calu-3 cell host responses to the different MERS-CoV strains, with MERS-CoV Eng 1 inducing early kinetic changes, between 3 and 12 hours post infection, compared to MERS-CoV SA 1. Robust transcriptional changes distinguished the two MERS-CoV strains predominantly at the late time points. Combining statistical analysis of infection and cytokine-stimulated Calu-3 transcriptomics, we identified differential innate responses, including up-regulation of extracellular remodeling genes following MERS-CoV Eng 1 infection and differential pro-inflammatory responses. CONCLUSIONS: Through our genomics-based approach, we found topological differences in the kinetics and magnitude of the host response to MERS-CoV SA 1 and MERS-CoV Eng 1, with differential expression of innate immune and pro-inflammatory responsive genes as a result of IFN, TNF and IL-1α signaling. Predicted activation for STAT3 mediating gene expression relevant for epithelial cell-to-cell adherens and junction signaling in MERS-CoV Eng 1 infection suggest that these transcriptional differences may be the result of amino acid differences in viral proteins known to modulate innate immunity during MERS-CoV infection.


Asunto(s)
Citocinas/farmacología , Perfilación de la Expresión Génica , Genómica , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Línea Celular , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo
15.
J Virol ; 87(19): 10777-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903833

RESUMEN

The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 77 people, with a fatality rate of more than 50%. Alarmingly, the virus demonstrates the capability of human-to-human transmission, raising the possibility of global spread and endangering world health and economy. Here we have identified the receptor-binding domain (RBD) from the MERS-CoV spike protein and determined its crystal structure. This study also presents a structural comparison of MERS-CoV RBD with other coronavirus RBDs, successfully positioning MERS-CoV on the landscape of coronavirus evolution and providing insights into receptor binding by MERS-CoV. Furthermore, we found that MERS-CoV RBD functions as an effective entry inhibitor of MERS-CoV. The identified MERS-CoV RBD may also serve as a potential candidate for MERS-CoV subunit vaccines. Overall, this study enhances our understanding of the evolution of coronavirus RBDs, provides insights into receptor recognition by MERS-CoV, and may help control the transmission of MERS-CoV in humans.


Asunto(s)
Coronavirus/fisiología , Dipeptidil Peptidasa 4/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Humanos , Virus de la Leucemia Murina/genética , Medio Oriente , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Síndrome , Proteínas Virales/metabolismo
16.
J Virol ; 87(12): 6604-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23552422

RESUMEN

Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.


Asunto(s)
Bronquios/virología , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Coronavirus/fisiología , Pulmón/virología , Tropismo Viral , Bronquios/citología , Línea Celular , Coronavirus/efectos de los fármacos , Coronavirus/genética , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/virología , Células Epiteliales/virología , Humanos , Inmunidad Innata , Interferones/farmacología , Pulmón/citología , Técnicas de Cultivo de Órganos , Receptores de Coronavirus , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Replicación Viral
17.
Virus Res ; 344: 199357, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508400

RESUMEN

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Humanos , Ratones , SARS-CoV-2/genética , Replicación Viral , Estudio de Asociación del Genoma Completo , COVID-19/virología , Proteínas de Motivos Tripartitos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad
18.
J Virol ; 86(2): 884-97, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22072787

RESUMEN

SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Factores de Edad , Animales , Línea Celular , Femenino , Humanos , Ratones Endogámicos BALB C , Mutación , Genética Inversa , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Síndrome Respiratorio Agudo Grave/mortalidad , Síndrome Respiratorio Agudo Grave/patología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia
19.
J Virol ; 86(23): 12816-25, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993147

RESUMEN

The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.


Asunto(s)
Quirópteros/virología , Infecciones por Coronavirus/transmisión , Coronavirus Humano NL63/genética , Evolución Molecular , Filogenia , Zoonosis/virología , Animales , Secuencia de Bases , Teorema de Bayes , Western Blotting , Línea Celular , Biología Computacional , Heces/virología , Técnica del Anticuerpo Fluorescente , Humanos , Funciones de Verosimilitud , Maryland , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Replicación Viral/fisiología
20.
J Virol ; 85(23): 12201-15, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21937658

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV) is an important emerging virus that is highly pathogenic in aged populations and is maintained with great diversity in zoonotic reservoirs. While a variety of vaccine platforms have shown efficacy in young-animal models and against homologous viral strains, vaccine efficacy has not been thoroughly evaluated using highly pathogenic variants that replicate the acute end stage lung disease phenotypes seen during the human epidemic. Using an adjuvanted and an unadjuvanted double-inactivated SARS-CoV (DIV) vaccine, we demonstrate an eosinophilic immunopathology in aged mice comparable to that seen in mice immunized with the SARS nucleocapsid protein, and poor protection against a nonlethal heterologous challenge. In young and 1-year-old animals, we demonstrate that adjuvanted DIV vaccine provides protection against lethal disease in young animals following homologous and heterologous challenge, although enhanced immune pathology and eosinophilia are evident following heterologous challenge. In the absence of alum, DIV vaccine performed poorly in young animals challenged with lethal homologous or heterologous strains. In contrast, DIV vaccines (both adjuvanted and unadjuvanted) performed poorly in aged-animal models. Importantly, aged animals displayed increased eosinophilic immune pathology in the lungs and were not protected against significant virus replication. These data raise significant concerns regarding DIV vaccine safety and highlight the need for additional studies of the molecular mechanisms governing DIV-induced eosinophilia and vaccine failure, especially in the more vulnerable aged-animal models of human disease.


Asunto(s)
Pulmón/inmunología , Eosinofilia Pulmonar/inmunología , Eosinofilia Pulmonar/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Vacunas de Productos Inactivados/uso terapéutico , Vacunas Virales/uso terapéutico , Animales , Anticuerpos Antivirales/inmunología , Western Blotting , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Femenino , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Eosinofilia Pulmonar/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Vacunación , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA