Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(6): e1008810, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497091

RESUMEN

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract.


Asunto(s)
Criptorquidismo/genética , Regulación del Desarrollo de la Expresión Génica , Células Intersticiales del Testículo/patología , Proteínas del Tejido Nervioso/metabolismo , Diferenciación Sexual/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Criptorquidismo/patología , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Humanos , Insulina/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas/metabolismo , Transducción de Señal/genética , Testosterona/metabolismo , Proteína Gli3 con Dedos de Zinc/genética
2.
Biol Reprod ; 107(4): 902-915, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35766372

RESUMEN

Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and PI phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases, such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PI phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare the expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.


Asunto(s)
Infertilidad , Fosfatidilinositoles , Animales , Infertilidad/metabolismo , Fosfatos de Inositol/metabolismo , Masculino , Ratones , Fosfatidilinositoles/metabolismo , Semen/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
3.
FASEB J ; 33(11): 12435-12446, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419161

RESUMEN

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores de Péptidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Intoxicación por Tetracloruro de Carbono/genética , Línea Celular Transformada , Proliferación Celular/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Transducción de Señal/genética
4.
FASEB J ; : fj201800437R, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29882709

RESUMEN

The pathophysiology of arteriovenous fistula (AVF) maturation failure is not completely understood but impaired outward remodeling (OR) and intimal hyperplasia are thought to be contributors. This adverse vascular response after AVF surgery results from interplay between vascular smooth muscle cells (VSMCs), the extracellular matrix (ECM), and inflammatory cells. Relaxin (RLN) is a hormone that acts on the vasculature via interaction with RLN/insulin-like peptide family receptor 1 (RXFP1), resulting in vasodilatation, ECM remodeling, and decreased inflammation. In the present study, we evaluated the consequences of RXFP1 knockout ( Rxfp1-/-) on AVF maturation in a murine model of AVF failure. Rxfp1-/- mice showed a 22% decrease in vessel size at the venous outflow tract 14 d after AVF surgery. Furthermore, a 43% increase in elastin content was observed in the lesions of Rxfp1-/- mice and coincided with a 41% reduction in elastase activity. In addition, Rxfp1-/- mice displayed a 6-fold increase in CD45+ leukocytes, along with a 2-fold increase in monocyte chemoattractant protein 1 (MCP1) levels, when compared with wild-type mice. In vitro, VSMCs from Rxfp1-/- mice exhibited a synthetic phenotype, as illustrated by augmentation of collagen, fibronectin, TGF-ß, and platelet-derived growth factor mRNA. In addition, VSMCs derived from Rxfp1-/- mice showed a 5-fold increase in cell migration. Finally, RXFP1 and RLN expression levels were increased in human AVFs when compared with unoperated cephalic veins. In conclusion, RXFP1 deficiency hampers elastin degradation and results in induced vascular inflammation after AVF surgery. These processes impair OR in murine AVF, suggesting that the RLN axis could be a potential therapeutic target for promoting AVF maturation.-Bezhaeva, T., de Vries, M. R., Geelhoed, W. J., van der Veer, E. P., Versteeg, S., van Alem, C. M. A., Voorzaat, B. M., Eijkelkamp, N., van der Bogt, K. E., Agoulnik, A. I., van Zonneveld, A.-J., Quax, P. H. A., Rotmans, J. I. Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas.

5.
Biochemistry ; 55(12): 1772-83, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26866459

RESUMEN

The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/agonistas , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Macaca , Ratones , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/química , Relaxina/farmacología , Porcinos
6.
Biol Reprod ; 94(3): 67, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843448

RESUMEN

The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neovascularización Patológica/metabolismo , Quistes Ováricos/metabolismo , Oviductos/anomalías , Receptor Notch1/metabolismo , Animales , Femenino , Fertilidad , Genes Transgénicos Suicidas , Ratones , Mutación , Oviductos/crecimiento & desarrollo , Receptor Notch1/genética , Transducción de Señal , Regulación hacia Arriba , Útero/irrigación sanguínea , Útero/patología , Trombosis de la Vena
7.
FASEB J ; 29(6): 2327-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713029

RESUMEN

It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Receptores Androgénicos/genética , Transducción de Señal/genética , Testículo/citología , Animales , Animales Recién Nacidos , Apoptosis/genética , Diferenciación Celular/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Células Intersticiales del Testículo/citología , Masculino , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Receptores Androgénicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/embriología , Testículo/crecimiento & desarrollo , Factores de Tiempo
8.
Biol Reprod ; 92(4): 91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25715795

RESUMEN

Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.


Asunto(s)
Genitales Femeninos/fisiología , Músculo Liso/citología , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Linaje de la Célula , Femenino , Regulación del Desarrollo de la Expresión Génica , Genitales Femeninos/citología , Genitales Femeninos/patología , Operón Lac , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parto/genética , Embarazo , Sínfisis Pubiana/patología , Reproducción/fisiología , Transgenes/genética , beta-Galactosidasa/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(23): 8878-83, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615366

RESUMEN

The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called "ancient" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.


Asunto(s)
Animales Domésticos/genética , Demografía , Perros/genética , Variación Genética , Animales , Arqueología , Análisis por Conglomerados , Perros/fisiología , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
10.
Genesis ; 52(4): 328-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24443144

RESUMEN

As a dual function protein, ß-catenin affects both cell adhesion and mediates canonical Wnt/ß-catenin cell signaling. ß-Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP-mediated conditional inactivation of the ß-catenin gene (Ctnnb1) in male gonads using a protamine promoter-driven Cre transgene (Prm-cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8-icre) had no effect on male fertility. We have shown that the Stra8-icre transgene was highly efficient in generating deletion in early pre-meiotic and post-meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that ß-catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off-target expression of Prm-cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre-transgenes should be encouraged to reduce potential errors.


Asunto(s)
Fertilidad , Espermatozoides/metabolismo , beta Catenina/genética , Animales , Animales no Consanguíneos , Epidídimo/anatomía & histología , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamaño de los Órganos , Vesículas Seminales/anatomía & histología , Espermatogénesis , Testículo/anatomía & histología , Testículo/citología , beta Catenina/metabolismo
11.
Blood ; 119(2): 629-36, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22028476

RESUMEN

The ovarian peptide hormone, relaxin, circulates during pregnancy, contributing to profound maternal vasodilation through endothelial and nitric oxide (NO)-dependent mechanisms. Circulating numbers of bone marrow-derived endothelial cells (BMDECs), which facilitate angiogenesis and contribute to repair of vascular endothelium, increase during pregnancy. Thus, we hypothesized that relaxin enhances BMDEC NO production, circulating numbers, and function. Recombinant human relaxin-2 (rhRLX) stimulated PI3K/Akt B-dependent NO production in human BMDECs within minutes, and activated BMDEC migration that was inhibited by L-N(G)-nitroarginine methyl ester. In BMDECs isolated from relaxin/insulin-like family peptide receptor 2 gene (Rxfp2) knockout and wild-type mice, but not Rxfp1 knockout mice, rhRLX rapidly increased NO production. Similarly, rhRLX increased circulating BMDEC number in Rxfp2 knockout and wild-type mice, but not Rxfp1 knockout mice as assessed by colony formation and flow cytometry. Taken together, these results indicate that relaxin effects BMDEC function through the RXFP1 receptor. Finally, both vascularization and incorporation of GFP-labeled BMDECs were stimulated in rhRLX-impregnated Matrigel pellets implanted in mice. To conclude, relaxin is a novel regulator of BMDECs number and function, which has implications for angiogenesis and vascular remodeling in pregnancy, as well as therapeutic potential in vascular disease.


Asunto(s)
Movimiento Celular , Endotelio Vascular/citología , Neovascularización Fisiológica , Óxido Nítrico/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Relaxina/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Femenino , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Vasodilatación
12.
J Pathol ; 230(1): 39-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23288785

RESUMEN

A significant number of patients with germline mutations in the Wilms' tumour 1 (WT1) gene, a transcriptional factor essential for early renal and gonadal development, display cryptorchidism or non-scrotal testis position. We show here that WT1 is expressed during development in the mouse gubernacular ligament connecting the testis to the abdominal wall. Conditional inactivation of Wt1 in the gubernaculum (GU-WT1KO animals) resulted in abnormal differentiation of the gubernacula during development and, in about 40% of adult males, unilateral, always left-sided, cryptorchidism. At birth the right testis was positioned above the processus vaginalis and eventually moved into the developing scrotal pouch. In affected mutants the left testis was displaced from the normal position and the left processus vaginalis failed to form. The analysis of testicular descent at different stages of postnatal development suggests that unilateral cryptorchidism might be caused by asymmetry in the positions of the abdominal organs providing a higher degree of mobility for the left testis. Spermatogenesis in GU-WT1KO animals was blocked in cryptorchid testes located in a high pararenal position, but was maintained in testes located in a low abdominal position. Conditional inactivation of both Wt1 and androgen receptor (Ar) genes in the gubernaculum led to a bilateral asymmetrical cryptorchidism in all mutant males, with the left testis again located higher than the right one. The malformations induced by WT1 and AR deficiency in the gubernaculum and processus vaginalis, in combination with mechanical constraints on testis descent, determine the final position of the testes. In summary, our data indicate that WT1 is directly involved in gubernaculum differentiation. Taken together, the results of the study underline the complex nature of testicular descent, with an involvement in this process of several genetic factors and developmental events.


Asunto(s)
Criptorquidismo/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Testículo/anomalías , Testículo/fisiología , Proteínas WT1/genética , Animales , Animales Recién Nacidos , Femenino , Citometría de Flujo , Eliminación de Gen , Conducto Inguinal/crecimiento & desarrollo , Conducto Inguinal/fisiología , Riñón/crecimiento & desarrollo , Riñón/fisiología , Operón Lac , Masculino , Ratones , Ratones Noqueados , Receptores Androgénicos/genética , Testículo/crecimiento & desarrollo
13.
Biochem Pharmacol ; : 116401, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945278

RESUMEN

The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases.

14.
Biol Reprod ; 87(6): 143, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23100620

RESUMEN

Relaxin family peptide receptor 2 (RXFP2) is the cognate receptor of a peptide hormone insulin-like 3 (INSL3). INSL3 is expressed at high levels in both fetal and adult Leydig cells. Deletion of Insl3 or Rxfp2 genes in mice caused cryptorchidism resulting from a failure of gubernaculum development. Using a novel mouse transgenic line with a knock-in LacZ reporter in the Rxfp2 locus, we detected a robust Rxfp2 expression in embryonic and early postnatal gubernaculum in males and in postmeiotic spermatogenic cells in adult testis. To study the role of INSL3/RXFP2 signaling in male reproduction, we produced a floxed Rxfp2 allele and used the Cre/loxP approach to delete Rxfp2 in different tissues. Using Cre transgene driven by retinoic acid receptor beta promoter, conditional gene targeting in gubernacular mesenchymal cells at early embryonic stages caused high intraabdominal cryptorchidism as in males with a global deletion of Rxfp2. However, when the Rxfp2 was deleted in gubernacular smooth or striated muscle cells, no abnormalities of testicular descent or testis development were found. Specific ablation of Rxfp2 in male germ cells using Stra8-icre transgene did not affect testis descent, spermatogenesis, or fertility in adult males. No significant change in germ cell apoptosis was detected in mutant males. In summary, our data indicate that the INSL3/RXFP2 signaling is important for testicular descent but dispensable for spermatogenesis and fertility in adult males.


Asunto(s)
Criptorquidismo/genética , Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Maduración Sexual , Transducción de Señal , Espermatogénesis , Testículo/crecimiento & desarrollo , Animales , Apoptosis , Supervivencia Celular , Cruzamientos Genéticos , Criptorquidismo/metabolismo , Criptorquidismo/patología , Genes Reporteros , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Insulina/genética , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Espermatozoides/citología , Espermatozoides/metabolismo , Espermatozoides/patología , Testículo/citología , Testículo/metabolismo , Testículo/patología
15.
Commun Biol ; 5(1): 1183, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333465

RESUMEN

The relaxin/insulin-like family peptide receptor 2 (RXFP2) belongs to the family of class A G-protein coupled receptors (GPCRs) and it is the only known target for the insulin-like factor 3 peptide (INSL3). The importance of this ligand-receptor pair in the development of the gubernacular ligament during the transabdominal phase of testicular descent is well established. More recently, RXFP2 has been implicated in maintaining healthy bone formation. In this report, we describe the discovery of a small molecule series of RXFP2 agonists. These compounds are highly potent, efficacious, and selective RXFP2 allosteric agonists that induce gubernacular invagination in mouse embryos, increase mineralization activity in human osteoblasts in vitro, and improve bone trabecular parameters in adult mice. The described RXFP2 agonists are orally bioavailable and display favorable pharmacokinetic properties, which allow for future evaluation of the therapeutic benefits of modulating RXFP2 activation in disease models.


Asunto(s)
Relaxina , Masculino , Adulto , Humanos , Ratones , Animales , Relaxina/farmacología , Insulina/farmacología , Receptores Acoplados a Proteínas G/fisiología , Testículo , Hormonas Esteroides Gonadales , Receptores de Péptidos
16.
Front Physiol ; 12: 650769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305630

RESUMEN

Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.

17.
Commun Biol ; 4(1): 416, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772116

RESUMEN

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.


Asunto(s)
Síndrome Metabólico/terapia , Monoéster Fosfórico Hidrolasas/genética , Sustancias Protectoras/farmacología , Transducción de Señal , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología
18.
Int J Cancer ; 127(3): 521-31, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19950223

RESUMEN

The functional role of INSL3 and its receptor RXFP2 in carcinogenesis is largely unknown. We have previously demonstrated (pro-)cathepsin-L as a target of INSL3 in human thyroid cancer cells facilitating penetration of tumor cells through elastin matrices. We demonstrate the expression of RXFP2 in human thyroid tissues and in mouse follicular thyroid epithelial cells using Cre-recombinase transgene driven by Rxfp2 promoter. Recombinant and secreted INSL3 increased the motility of thyroid carcinoma (TC) cells in an autocrine/paracrine manner. This effect required the presence of RXFP2. We identified S100A4 as a novel INSL3 target molecule and showed that S100A4 facilitated INSL3-induced enhanced motility. Stable transfectants of the human follicular TC cell line FTC-133 expressing and secreting bioactive human INSL3 displayed enhanced anchorage-independent growth in soft agar assays. Xenotransplant experiments in nude mice showed that INSL3, but not EGFP-mock transfectants, developed fast-growing and highly vascularized xenografts. We used human umbilical vein endothelial cells in capillary tube formation assays to demonstrate increased 2-dimensional tube formations induced by recombinant human INSL3 and human S100A4 comparable to the effect of vascular endothelial growth factor used as positive control. We conclude that INSL3 is a powerful and multifunctional promoter of tumor growth and angiogenesis in human thyroid cancer cell xenografts. INSL3 actions involve RXFP2 activation and the secretion of S100A4 and (pro-)cathepsin-L.


Asunto(s)
Transformación Celular Neoplásica , Insulina/fisiología , Proteínas/fisiología , Neoplasias de la Tiroides/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Secuencia de Bases , División Celular/fisiología , Niño , Cartilla de ADN , Femenino , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Metástasis de la Neoplasia , ARN Interferente Pequeño , Proteína de Unión al Calcio S100A4 , Proteínas S100/metabolismo , Neoplasias de la Tiroides/patología , Trasplante Heterólogo , Adulto Joven
19.
Mamm Genome ; 21(9-10): 442-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20963592

RESUMEN

Using genome-wide mutagenesis with N-ethyl-N-nitrosourea (ENU), a mouse mutant with cryptorchidism was identified. Genome mapping and exon sequencing identified a novel missense mutation (D294G) in Relaxin/insulin-like family peptide receptor 2 (Rxfp2). The mutation impaired testicular descent and resulted in decreased testis weight in Rxfp2 ( DG/DG ) mice compared to Rxfp2 (+/DG ) and Rxfp2 (+/+) mice. Testicular histology of the Rxfp2 ( DG/DG ) mice revealed spermatogenic defects ranging from germ cell loss to tubules with Sertoli-cell-only features. Genetic complementation analysis using a loss-of-function allele (Rxfp2 (-)) confirmed causality of the D294G mutation. Specifically, mice with one of each mutant allele (Rxfp2 ( DG/-)) exhibited decreased testis weight and failure of the testes to descend compared to their Rxfp2 (+/-) littermates. Total and cell-surface expression of mouse RXFP2 protein and intracellular cAMP accumulation were measured. Total expression of the D294G protein was minimally reduced compared to wild-type, but cell-surface expression was markedly decreased. When analyzed for cAMP accumulation, the EC50 was similar for cells transfected with wild-type and mutant RXFP2 receptor. However, the maximum cAMP response that the mutant receptor reached was greatly reduced compared to the wild-type receptor. In silico modeling of leucine rich repeats (LRRs) 7-9 indicated that aspartic acid 294 is located within the ß-pleated sheet of LRR8. We thus postulate that mutation of D294 results in protein misfolding and aberrant trafficking. The ENU-induced D294G mutation underscores the role of the INSL3/RXFP2-mediated pathway in testicular descent and expands the repertoire of mutations known to affect receptor trafficking and function.


Asunto(s)
Criptorquidismo/genética , Mutación Missense , Receptores Acoplados a Proteínas G/genética , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Etilnitrosourea , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Reacción en Cadena de la Polimerasa , Conformación Proteica , Pliegue de Proteína , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Testículo/anomalías , Testículo/fisiopatología
20.
J Endocrinol ; 247(1): R1-R12, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32813485

RESUMEN

Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.


Asunto(s)
Insulina/fisiología , Proteínas/fisiología , Animales , Huesos/fisiología , Femenino , Humanos , Células Intersticiales del Testículo , Masculino , Músculo Esquelético/fisiología , Ovario/fisiología , Receptores Acoplados a Proteínas G/fisiología , Reproducción/fisiología , Transducción de Señal , Testículo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA