Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Biol ; 430(18 Pt B): 3323-3336, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29928893

RESUMEN

Twinfilin is a highly conserved member of the actin depolymerization factor homology (ADF-H) protein superfamily, which also includes ADF/Cofilin, Abp1/Drebrin, GMF, and Coactosin. Twinfilin has a unique molecular architecture consisting of two ADF-H domains joined by a linker and followed by a C-terminal tail. Yeast Twinfilin, in conjunction with yeast cyclase-associated protein (Srv2/CAP), increases the rate of depolymerization at both the barbed and pointed ends of actin filaments. However, it has remained unclear whether these activities extend to Twinfilin homologs in other species. To address this, we purified the three mouse Twinfilin isoforms (mTwf1, mTwf2a, mTwf2b) and mouse CAP1, and used total internal reflection fluorescence microscopy assays to study their effects on filament disassembly. Our results show that all three mouse Twinfilin isoforms accelerate barbed end depolymerization similar to yeast Twinfilin, suggesting that this activity is evolutionarily conserved. In striking contrast, mouse Twinfilin isoforms and CAP1 failed to induce rapid pointed end depolymerization. Using chimeras, we show that the yeast-specific pointed end depolymerization activity is specified by the C-terminal ADF-H domain of yeast Twinfilin. In addition, Tropomyosin decoration of filaments failed to impede depolymerization by yeast and mouse Twinfilin and Srv2/CAP, but inhibited Cofilin severing. Together, our results indicate that Twinfilin has conserved functions in regulating barbed end dynamics, although its ability to drive rapid pointed end depolymerization appears to be species-specific. We discuss the implications of this work, including that pointed end depolymerization may be catalyzed by different ADF-H family members in different species.


Asunto(s)
Citoesqueleto de Actina/química , Proteínas de Microfilamentos/química , Multimerización de Proteína , Proteínas Tirosina Quinasas/química , Citoesqueleto de Actina/metabolismo , Animales , Citoesqueleto/química , Citoesqueleto/metabolismo , Destrina/química , Destrina/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA