Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(3): 604-618, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607512

RESUMEN

DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.


Asunto(s)
ADN/genética , Conformación de Ácido Nucleico , Estructuras R-Loop/genética , ARN/genética , Cromatina/química , Cromatina/genética , ADN/química , Roturas del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Homeostasis/genética , Humanos , ARN/química , Transcripción Genética
2.
Annu Rev Biochem ; 85: 291-317, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27023844

RESUMEN

Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Mutagénesis , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Transcripción Genética , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Roturas del ADN de Cadena Simple , Replicación del ADN , Genoma Humano , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Conformación de Ácido Nucleico , Recombinación Genética
3.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38986581

RESUMEN

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN , Inestabilidad Genómica/genética , ARN/metabolismo , ARN/genética , Replicación del ADN/genética , Animales , Humanos , Transcripción Genética/genética
4.
Mol Cell ; 83(20): 3707-3719.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37827159

RESUMEN

R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.


Asunto(s)
Estructuras R-Loop , Ribonucleasas , Humanos , Estructuras R-Loop/genética , Ribonucleasas/genética , ARN/genética , ADN , Replicación del ADN , ADN Helicasas/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Inestabilidad Genómica
5.
Nat Rev Mol Cell Biol ; 17(9): 553-63, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27435505

RESUMEN

The frequent occurrence of transcription and DNA replication in cells results in many encounters, and thus conflicts, between the transcription and replication machineries. These conflicts constitute a major intrinsic source of genome instability, which is a hallmark of cancer cells. How the replication machinery progresses along a DNA molecule occupied by an RNA polymerase is an old question. Here we review recent data on the biological relevance of transcription-replication conflicts, and the factors and mechanisms that are involved in either preventing or resolving them, mainly in eukaryotes. On the basis of these data, we provide our current view of how transcription can generate obstacles to replication, including torsional stress and non-B DNA structures, and of the different cellular processes that have evolved to solve them.


Asunto(s)
Replicación del ADN , Transcripción Genética , Animales , Ensamble y Desensamble de Cromatina , ADN/química , Reparación del ADN , ADN Superhelicoidal , Inestabilidad Genómica , Humanos , ARN/química , Elementos Reguladores de la Transcripción
6.
Mol Cell ; 79(3): 361-362, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32763222

RESUMEN

In this issue of Molecular Cell, Zhang et al. (2020) reveal that ATM triggers RNA methylation of DNA-RNA hybrids formed at double-strand breaks (DSBs) to modulate repair, adding a new layer of complexity to RNA's role in the DNA damage response.


Asunto(s)
Roturas del ADN de Doble Cadena , ARN , Adenosina/análogos & derivados , Proteínas de la Ataxia Telangiectasia Mutada , ADN , Reparación del ADN , Metilación
7.
Genes Dev ; 34(13-14): 898-912, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32439635

RESUMEN

Nonscheduled R loops represent a major source of DNA damage and replication stress. Cells have different ways to prevent R-loop accumulation. One mechanism relies on the conserved THO complex in association with cotranscriptional RNA processing factors including the RNA-dependent ATPase UAP56/DDX39B and histone modifiers such as the SIN3 deacetylase in humans. We investigated the function of UAP56/DDX39B in R-loop removal. We show that UAP56 depletion causes R-loop accumulation, R-loop-mediated genome instability, and replication fork stalling. We demonstrate an RNA-DNA helicase activity in UAP56 and show that its overexpression suppresses R loops and genome instability induced by depleting five different unrelated factors. UAP56/DDX39B localizes to active chromatin and prevents the accumulation of RNA-DNA hybrids over the entire genome. We propose that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Genoma/genética , Estructuras R-Loop/genética , Transcripción Genética/genética , Cromatina/metabolismo , ARN Helicasas DEAD-box/genética , Expresión Génica/genética , Inestabilidad Genómica/genética , Humanos , Células K562
8.
Mol Cell ; 76(4): 529-530, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31756322

RESUMEN

The study by Tan-Wong et al. (2019) in this issue of Molecular Cell reveals a capacity of R-loops to promote antisense transcription expanding our view of the features that a DNA region may have to act as a promoter.


Asunto(s)
Mamíferos , Estructuras R-Loop , Animales , Regiones Promotoras Genéticas
9.
Mol Cell ; 76(1): 57-69.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31519522

RESUMEN

Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN Mensajero/genética , Estrés Fisiológico , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Mutación , ARN Polimerasa II/metabolismo , Empalme del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
10.
PLoS Genet ; 20(9): e1011300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39255275

RESUMEN

The genome of living cells is constantly challenged by DNA lesions that interfere with cellular processes such as transcription and replication. A manifold of mechanisms act in concert to ensure adequate DNA repair, gene expression, and genome stability. Bulky DNA lesions, such as those induced by UV light or the DNA-damaging agent 4-nitroquinoline oxide, act as transcriptional and replicational roadblocks and thus represent a major threat to cell metabolism. When located on the transcribed strand of active genes, these lesions are handled by transcription-coupled nucleotide excision repair (TC-NER), a yet incompletely understood NER sub-pathway. Here, using a genetic screen in the yeast Saccharomyces cerevisiae, we identified histone variant H2A.Z as an important component to safeguard transcription and DNA integrity following UV irradiation. In the absence of H2A.Z, repair by TC-NER is severely impaired and RNA polymerase II clearance reduced, leading to an increase in double-strand breaks. Thus, H2A.Z is needed for proficient TC-NER and plays a major role in the maintenance of genome stability upon UV irradiation.


Asunto(s)
Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcripción Genética , Rayos Ultravioleta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Reparación del ADN/genética , Histonas/metabolismo , Histonas/genética , Inestabilidad Genómica/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Genoma Fúngico , Roturas del ADN de Doble Cadena/efectos de la radiación , 4-Nitroquinolina-1-Óxido/farmacología , Regulación Fúngica de la Expresión Génica/efectos de la radiación
11.
Genes Dev ; 33(15-16): 1008-1026, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123061

RESUMEN

Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.


Asunto(s)
Replicación del ADN/fisiología , Inestabilidad Genómica/genética , Transcripción Genética/fisiología , Genoma/genética , Humanos , Neoplasias/fisiopatología , Elongación de la Transcripción Genética/fisiología
12.
Cell ; 146(2): 233-46, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21784245

RESUMEN

Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes.


Asunto(s)
Replicación del ADN , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinasa de Punto de Control 2 , Roturas del ADN de Doble Cadena , Hidroxiurea/farmacología , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell ; 70(1): 34-47.e4, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29551515

RESUMEN

UV-induced photoproducts are responsible for the pathological effects of sunlight. Mutations in nucleotide excision repair (NER) cause severe pathologies characterized by sunlight sensitivity, coupled to elevated predisposition to cancer and/or neurological dysfunctions. We have previously shown that in UV-irradiated non-cycling cells, only a particular subset of lesions activates the DNA damage response (DDR), and this requires NER and EXO1 activities. To define the molecular mechanism acting at these lesions, we demonstrate that Y family TLS polymerases are recruited at NER- and EXO1-positive lesion sites in non-S phase cells. The coordinated action of EXO1 and Y family TLS polymerases promotes checkpoint activation, leads to lesion repair, and is crucial to prevent cytotoxic double-strand break (DSB) formation.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Rayos Ultravioleta/efectos adversos , Muerte Celular/efectos de la radiación , Línea Celular , Enzimas Reparadoras del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transporte de Proteínas , ADN Polimerasa iota
14.
Nucleic Acids Res ; 52(7): 3623-3635, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281203

RESUMEN

Certain DNA sequences can adopt a non-B form in the genome that interfere with DNA-templated processes, including transcription. Among the sequences that are intrinsically difficult to transcribe are those that tend to form R-loops, three-stranded nucleic acid structures formed by a DNA-RNA hybrid and the displaced ssDNA. Here we compared the transcription of an endogenous gene with and without an R-loop-forming sequence inserted. We show that, in agreement with previous in vivo and in vitro analyses, transcription elongation is delayed by R-loops in yeast. Importantly, we demonstrate that the Rat1 transcription terminator factor facilitates transcription throughout such structures by inducing premature termination of arrested RNAPIIs. We propose that RNase H degrades the RNA moiety of the hybrid, providing an entry site for Rat1. Thus, we have uncovered an unanticipated function of Rat1 as a transcription restoring factor opening up the possibility that it may also promote transcription through other genomic DNA structures intrinsically difficult to transcribe. If R-loop-mediated transcriptional stress is not relieved by Rat1, it will cause genomic instability, probably through the increase of transcription-replication conflicts, a deleterious situation that could lead to cancer.


Asunto(s)
Exorribonucleasas , Estructuras R-Loop , Ribonucleasa H , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Estructuras R-Loop/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , Saccharomyces cerevisiae/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
15.
Genes Dev ; 32(13-14): 965-977, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954833

RESUMEN

R loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA-DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA-DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo. Importantly, an excess of Yra1 increases R-loop-mediated genome instability caused by transcription-replication collisions regardless of whether they are codirectional or head-on. It also induces telomere shortening in telomerase-negative cells and accelerates senescence, consistent with a defect in telomere replication. Our results indicate that RNA-DNA hybrids form transiently in cells regardless of replication and, after stabilization by excess Yra1, compromise genome integrity, in agreement with a two-step model of R-loop-mediated genome instability. This work opens new perspectives to understand transcription-associated genome instability in repair-deficient cells, including tumoral cells.


Asunto(s)
Inestabilidad Cromosómica/genética , Replicación del ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Transcripción Genética , Cromatina/metabolismo , Hibridación de Ácido Nucleico , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo
16.
EMBO J ; 40(7): e106018, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33634895

RESUMEN

The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.


Asunto(s)
Proteína BRCA2/metabolismo , ARN Helicasas DEAD-box/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA2/genética , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , Roturas del ADN de Doble Cadena , Células HEK293 , Humanos , Ácidos Nucleicos Heterodúplex , Unión Proteica
17.
EMBO Rep ; 24(12): e57801, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818834

RESUMEN

Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.


Asunto(s)
Roturas del ADN de Doble Cadena , ARN , ARN/genética , Recombinación Homóloga , Reparación del ADN , ADN/genética , Reparación del ADN por Unión de Extremidades
18.
Mol Cell ; 66(5): 597-609.e5, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575656

RESUMEN

R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , ADN de Hongos/genética , Genoma Fúngico , Inestabilidad Genómica , Histonas/genética , Mutación Puntual , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Cromatina/química , Cromatina/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
19.
Nucleic Acids Res ; 51(12): 6337-6354, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224534

RESUMEN

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.


Asunto(s)
Actinas , Replicación del ADN , Actinas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , ADN de Cadena Simple/genética , Chaperonas Moleculares/genética
20.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796829

RESUMEN

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Asunto(s)
Inestabilidad Genómica , RecQ Helicasas , Saccharomyces cerevisiae , Transcripción Genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Humanos , Transcripción Genética/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA