Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Transgenic Res ; 23(1): 1-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23963741

RESUMEN

Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.


Asunto(s)
Animales Modificados Genéticamente , Biotecnología , Alimentos Modificados Genéticamente , Plantas Modificadas Genéticamente , Animales , Unión Europea , Humanos , Medición de Riesgo
2.
EFSA J ; 22(4): e8723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585217

RESUMEN

The food enzyme subtilisin (EC 3.4.21.62) is produced with the genetically modified Bacillus licheniformis strain NZYM-CB by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in six food manufacturing processes. The dietary exposure to the food enzyme-TOS was estimated to be up to 0.722 mg TOS/kg body weight (bw) per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. As no other concerns arising from the manufacturing process were identified, the Panel considered that toxicological tests were not required for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 20 matches were found, including two food allergens (melon and pomegranate). The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, particularly in individuals sensitised to melon and pomegranate, but would not exceed the risk from consumption of melon or pomegranate. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

3.
EFSA J ; 22(2): e8617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379730

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain AGN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used to prevent acrylamide formation in food processing. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.434 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this food enzyme as a suitable substitute for the asparaginase to be used in the toxicological studies, because the genetic differences between the production strains are not expected to result in a different toxigenic potential, and the raw materials and manufacturing processes of both food enzymes are comparable. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1038 mg TOS/kg bw per day, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 724. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 22(3): e8631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450083

RESUMEN

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.

5.
EFSA J ; 22(3): e8606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440253

RESUMEN

The food enzyme α-galactosidase (α-d-galactoside galactohydrolase; EC 3.2.1.22) is produced with the genetically modified Saccharomyces cerevisiae strain CBS 615.94 by Kerry Ingredients & Flavours Ltd. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the genetically modified microbial source or from the manufacturing process have been identified, the Panel considered that toxicological tests were not needed for the assessment of this food enzyme. The food enzyme is intended to be used in guar gum processing. The dietary exposure was estimated to be up to 0.828 mg TOS/kg body weight per day in European populations. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(5): e8770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756348

RESUMEN

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

7.
EFSA J ; 22(5): e8780, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751507

RESUMEN

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. The food enzyme is intended to be used in eight food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, dietary exposure was calculated only for the remaining six processes. It was estimated to be up to 0.056 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. Consequently, in the absence of other concerns, the Panel considered that toxicological studies were not needed for the safety assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for the production of distilled alcohol), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

8.
EFSA J ; 22(2): e8616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38415018

RESUMEN

The food enzyme ß-fructofuranosidase (ß-d-fructofuranoside fructohydrolase; EC 3.2.1.26) is produced with the non-genetically modified Saccharomyces cerevisiae strain NCYC R693 by Kerry Ingredients & Flavours Ltd. The production strain meets the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in four food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.485 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach of safety assessment and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a tomato allergen was found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to tomato, cannot be excluded. However, the likelihood of allergic reactions is expected not to exceed the likelihood of allergic reactions to tomato. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(7): e8873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966132

RESUMEN

The food enzyme subtilisin (EC 3.4.21.62) is produced with the non-genetically modified Bacillus paralicheniformis strain AP-01 by Nagase (Europa) GmbH. It was considered free from viable cells of the production organism. The food enzyme is intended to be used in five food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in one process, dietary exposure was calculated only for the remaining four food manufacturing processes. It was estimated to be up to 0.875 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme has the capacity to produce bacitracin and thus failed to meet the requirements of the Qualified Presumption of Safety approach. Bacitracin was detected in the industrial fermentation medium but not in the food enzyme itself. However, the limit of detection of the analytical method used for bacitracin was not sufficient to exclude the possible presence of bacitracin at a level representing a risk for the development of antimicrobial resistant bacteria. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and twenty-eight matches with respiratory allergens, one match with a contact allergen and two matches with food allergens (melon and pomegranate) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon or pomegranate, cannot be excluded, but would not exceed the risk of consuming melon or pomegranate. Based on the data provided, the Panel could not exclude the presence of bacitracin, a medically important antimicrobial, and consequently the safety of this food enzyme could not be established.

10.
EFSA J ; 22(7): e8877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974925

RESUMEN

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Penicillium caseifulvum strain AE-LRF by Amano Enzyme Inc. The food enzyme was free from viable cells of the production organism. It is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.013 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 69 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 5308. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. However, the Panel noted that traces of ■■■■■, used in the manufacture of the triacylglycerol lipase, may be found in the food enzyme. The Panel considered that the risk of allergic reactions upon dietary exposure could not be excluded, particularly in individuals sensitised to fish. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

11.
EFSA J ; 22(7): e8874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010862

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

12.
EFSA J ; 22(1): e8506, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38213414

RESUMEN

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the non-genetically modified Aspergillus sp. strain AE-MB by Amano Enzyme Inc. The food enzyme is considered free from viable cells of the production organism. It is intended to be used in five food manufacturing processes: processing of dairy products for the production of (1) flavouring preparations; processing of plant- and fungal-derived products for the production of (2) protein hydrolysates; processing of meat and fish products for the production of (3) protein hydrolysates, (4) modified meat and fish products and processing of (5) yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.273 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 183 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 135 (infants), 81 (toddlers), 83 (children), 109 (adolescents), 160 (adults) and 184 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that this food enzyme could not be considered safe under the intended conditions of use.

13.
EFSA J ; 22(2): e8624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405112

RESUMEN

The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

14.
EFSA J ; 22(1): e8509, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288396

RESUMEN

The food enzyme protein-glutamine γ-glutamyltransferase (protein-glutamine: amine γ-glutamyltransferase; EC 2.3.2.13) is produced with the non-genetically modified Streptomyces mobaraensis strain M2020197 by Taixing Dongsheng Bio-Tech Co. Ltd. The identity of the production strain and the absence of viable cells could not be established. The food enzyme is intended to be used in eight food manufacturing processes: processing of cereals and other grains for the production of (1) baked products, (2) cereal-based products other than baked; processing of dairy products for the production of (3) fermented dairy products, (4) cheese, (5) dairy desserts; processing of plant- and fungal-derived products for the production of (6) meat analogues, (7) plant-based analogues of milk and milk products; processing of meat and fish products for the production of (8) modified meat and fish products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 3.498 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 91 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 36 (infants), 26 (toddlers), 50 (children), 99 (adolescents), 115 (adults) and 133 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that the food enzyme could not be considered safe under the intended conditions of use.

15.
EFSA J ; 21(2): e07842, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846381

RESUMEN

The food enzyme cyclomaltodextrin glucanotransferase ((1-4)-α-d-glucan:(1-4)-α-d-glucan 4-α-d-[(1-4)-α-d-glucano]-transferase; EC 2.4.1.19) is produced with the non-genetically modified bacteria Anoxybacillus caldiproteolyticus strain TCM3-539 by Hayashibara Co., Ltd. It is free from viable cells of the production strain. The food enzyme is intended to be used for the manufacture of glucosyl hesperidin and ascorbic acid 2-glucoside. Since residual amounts of total organic solids are removed by filtration, adsorption, chromatography and crystallisation, dietary exposure estimation was considered not necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that the food enzyme does not give rise to safety concerns under the intended conditions of use.

16.
EFSA J ; 21(7): e08091, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37427017

RESUMEN

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is produced with the genetically modified Saccharomyces cerevisiae strain LALL-LI by Lallemand Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism, but not from recombinant DNA. It is intended to be used in baking processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.42 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety (QPS) approach to safety assessment. Therefore, the Panel considered that toxicological tests are not needed for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

17.
EFSA J ; 21(7): e08095, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37405174

RESUMEN

The food enzyme peroxidase (phenolic donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) is produced with the genetically modified Aspergillus niger strain MOX by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in whey processing. Dietary exposure to the food enzyme total organic solids (TOS) was estimated to be up to 0.635 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2,162 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure resulted in a margin of exposure of at least 3,405. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

18.
EFSA J ; 21(1): e07750, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698499

RESUMEN

The food enzyme ß-galactosidase (ß-D-galactoside galactohydrolase, EC 3.2.1.23) is produced with the non-genetically modified Kluyveromyces lactis strain GD-YNL by Godo Shusei Co., Ltd. The food enzyme is intended to be used for the hydrolysis of lactose in milk processing, production of fermented milk products and whey processing. The food enzyme is also intended for lactose hydrolysis in milk products at home. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 54 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the qualified presumption of safety approach of safety assessment and as no issue of concern raised from the production process, no toxicological studies other than assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

19.
EFSA J ; 21(2): e07468, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36818640

RESUMEN

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the genetically modified Bacillus subtilis strain AR-651 by AB Enzymes. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in baking processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.19 mg TOS/kg body weight (bw) per day in European populations. The production strain carries known antimicrobial resistance genes and consequently, it does not fully fulfil the requirements for the qualified presumption of safety (QPS) approach to safety assessment. However, considering the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the microbial source and its subsequent genetic modification or from the manufacturing process have been identified, the Panel considers that toxicological tests are not needed for the assessment of this food enzyme. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and three matches with respiratory allergens were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concludes that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

20.
EFSA J ; 21(2): e07832, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846386

RESUMEN

The food enzyme pectinesterase (pectin pectylhydrolase; EC 3.1.1.11) is produced with the genetically modified Aspergillus oryzae strain AR-962 by AB Enzymes GmbH. The genetic modifications did not give rise to safety concerns. The food enzyme was free from viable cells of the production organism and its DNA. It is intended to be used in five food manufacturing processes: fruit and vegetable processing for juice production, fruit and vegetable processing for products other than juice, production of wine and wine vinegar, production of plant extracts as flavouring preparations and coffee demucilation. Since residual amounts of total organic solids are removed by repeated washing or distillation, dietary exposure to the food enzyme total organic solids (TOS) from the production of flavouring extracts and coffee demucilation was considered not necessary. For the remaining three food processes, dietary exposure to the food enzyme-TOS was estimated to be up to 0.647 mg TOS/kg bw per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1,546. A search for the similarity of the amino acid sequence to those of known allergens was made and two matches with pollen allergens were found. The Panel considered that, under the intended conditions of use the risk of allergic reactions by dietary exposure, particularly in individuals sensitised to pollen allergens, cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA