RESUMEN
Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Melanoma Experimental/inmunología , Proteínas de Dominio T Box/biosíntesis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Diferenciación Celular/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/inmunología , Inmunoterapia , Activación de Linfocitos/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Transgénicos , Receptores OX40/agonistas , Receptores OX40/inmunología , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismoRESUMEN
Compartment syndrome (CS) is a well-known surgical emergency with high morbidity including potential long-term disability and limb loss. The most important factor determining the degree of morbidity with CS is time to treatment; therefore, early diagnosis and surgery are vital. We present a patient who fell off his bicycle and sustained cervical spine fractures causing near complete quadriplegia. He was found by the road over 12 hours later, so his creatine phosphokinase (CPK) was trended and serial examinations were performed. We identified tight deltoid, trapezius, and latissimus compartments and brought him to the operating room for fasciotomies. Although lab values and compartment pressures can be helpful, they should not guide treatment. It is important to consider atypical sites for CS and complete a head to toe physical examination. Patients should proceed to the operating room if clinical suspicion exists for CS because of the morbidity associated with a missed diagnosis.