Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 557(7705): 439-445, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743679

RESUMEN

In vertebrate hearts, the ventricular trabecular myocardium develops as a sponge-like network of cardiomyocytes that is critical for contraction and conduction, ventricular septation, papillary muscle formation and wall thickening through the process of compaction 1 . Defective trabeculation leads to embryonic lethality2-4 or non-compaction cardiomyopathy (NCC) 5 . There are divergent views on when and how trabeculation is initiated in different species. In zebrafish, trabecular cardiomyocytes extrude from compact myocardium 6 , whereas in chicks, chamber wall thickening occurs before overt trabeculation 7 . In mice, the onset of trabeculation has not been described, but is proposed to begin at embryonic day 9.0, when cardiomyocytes form radially oriented ribs 2 . Endocardium-myocardium communication is essential for trabeculation, and numerous signalling pathways have been identified, including Notch2,8 and Neuregulin (NRG) 4 . Late disruption of the Notch pathway causes NCC 5 . Whereas it has been shown that mutations in the extracellular matrix (ECM) genes Has2 and Vcan prevent the formation of trabeculae in mice9,10 and the matrix metalloprotease ADAMTS1 promotes trabecular termination 3 , the pathways involved in ECM dynamics and the molecular regulation of trabeculation during its early phases remain unexplored. Here we present a model of trabeculation in mice that integrates dynamic endocardial and myocardial cell behaviours and ECM remodelling, and reveal new epistatic relationships between the involved signalling pathways. NOTCH1 signalling promotes ECM degradation during the formation of endocardial projections that are critical for individualization of trabecular units, whereas NRG1 promotes myocardial ECM synthesis, which is necessary for trabecular rearrangement and growth. These systems interconnect through NRG1 control of Vegfa, but act antagonistically to establish trabecular architecture. These insights enabled the prediction of persistent ECM and cardiomyocyte growth in a mouse NCC model, providing new insights into the pathophysiology of congenital heart disease.


Asunto(s)
Corazón/embriología , Miocardio/citología , Miocardio/metabolismo , Neurregulina-1/metabolismo , Organogénesis , Receptor Notch1/metabolismo , Animales , Modelos Animales de Enfermedad , Endocardio/citología , Endocardio/metabolismo , Matriz Extracelular/metabolismo , Cardiopatías/congénito , Cardiopatías/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neurregulina-1/genética , Receptor Notch1/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Stem Cells ; 32(8): 2008-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24715711

RESUMEN

Mesenchymal stromal cell populations include a fraction, termed mesenchymal stem cells, exhibiting multipotency. Other cells within this population possess a lesser differentiation range. This was assumed to be due to a mesenchymal cellular cascade topped by a multipotent cell, which gives rise to progeny with diminishing differentiation potentials. Here, we show that mesenchymal cells, a priori exhibiting a limited differentiation potential, may gain new capacities and become multipotent following single-cell isolation. These fate changes were accompanied by upregulation of differentiation promoting genes, many of which also became H4K20me1 methylated. Early events in the process included TGFß and Wnt modulation, and downregulation of hypoxia signaling. Indeed, hypoxic conditions inhibited the observed cell changes. Overall, cell isolation from neighboring partners caused major molecular changes and particularly, a newly established epigenetic state, ultimately leading to the acquisition of new differentiation potentials and an altered cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Separación Celular , Células Madre Mesenquimatosas/citología , Animales , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula , Linaje de la Célula , Inmunoprecipitación de Cromatina , Células Clonales/citología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Nat Cardiovasc Res ; 2(4): 383-398, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37974970

RESUMEN

Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation. Here we survey the temporal transcriptomic and proteomic landscape of dedifferentiation-redifferentiation in adult mouse hearts and reveal that well-characterized dedifferentiation features largely return to normal, although elements of residual dedifferentiation remain, even after the contractile function is restored. These hearts appear rejuvenated and show robust resistance to ischemic injury, even 5 months after redifferentiation initiation. Cardiomyocyte redifferentiation is driven by negative feedback signaling and requires LATS1/2 Hippo pathway activity. Our data reveal the importance of cardiomyocyte redifferentiation in functional restoration during regeneration but also protection against future insult, in what could lead to a potential prophylactic treatment against ischemic heart disease for at-risk patients.

4.
Nat Cell Biol ; 22(11): 1346-1356, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046882

RESUMEN

Cardiomyocyte loss after injury results in adverse remodelling and fibrosis, inevitably leading to heart failure. The ERBB2-Neuregulin and Hippo-YAP signalling pathways are key mediators of heart regeneration, yet the crosstalk between them is unclear. We demonstrate that transient overexpression of activated ERBB2 in cardiomyocytes (OE CMs) promotes cardiac regeneration in a heart failure model. OE CMs present an epithelial-mesenchymal transition (EMT)-like regenerative response manifested by cytoskeletal remodelling, junction dissolution, migration and extracellular matrix turnover. We identified YAP as a critical mediator of ERBB2 signalling. In OE CMs, YAP interacts with nuclear-envelope and cytoskeletal components, reflecting an altered mechanical state elicited by ERBB2. We identified two YAP-activating phosphorylations on S352 and S274 in OE CMs, which peak during metaphase, that are ERK dependent and Hippo independent. Viral overexpression of YAP phospho-mutants dampened the proliferative competence of OE CMs. Together, we reveal a potent ERBB2-mediated YAP mechanotransduction signalling, involving EMT-like characteristics, resulting in robust heart regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor ErbB-2/metabolismo , Regeneración , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Mecanotransducción Celular , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Fosforilación , Receptor ErbB-2/genética , Proteínas Señalizadoras YAP
5.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868165

RESUMEN

During cardiac development, cardiomyocytes form complex inner wall structures called trabeculae. Despite significant investigation into this process, the potential role of metabolism has not been addressed. Using single cell resolution imaging in zebrafish, we find that cardiomyocytes seeding the trabecular layer actively change their shape while compact layer cardiomyocytes remain static. We show that Erbb2 signaling, which is required for trabeculation, activates glycolysis to support changes in cardiomyocyte shape and behavior. Pharmacological inhibition of glycolysis impairs cardiac trabeculation, and cardiomyocyte-specific loss- and gain-of-function manipulations of glycolysis decrease and increase trabeculation, respectively. In addition, loss of the glycolytic enzyme pyruvate kinase M2 impairs trabeculation. Experiments with rat neonatal cardiomyocytes in culture further support these observations. Our findings reveal new roles for glycolysis in regulating cardiomyocyte behavior during cardiac wall morphogenesis.


Asunto(s)
Corazón/embriología , Corazón/crecimiento & desarrollo , Morfogénesis/fisiología , Miocitos Cardíacos/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genes erbB-2/genética , Glucólisis , Corazón/fisiología , Modelos Animales , Morfogénesis/genética , Organogénesis/genética , Organogénesis/fisiología , Ratas , Transducción de Señal/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868166

RESUMEN

While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.


Asunto(s)
Proliferación Celular , Reprogramación Celular/fisiología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Reprogramación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes erbB-2/genética , Genes erbB-2/fisiología , Glucólisis , Corazón/embriología , Hexoquinasa/genética , Hexoquinasa/metabolismo , Masculino , Ratones , Modelos Animales , Miocardio/metabolismo , Miocitos Cardíacos/citología , Neurregulina-1/genética , Regeneración/genética , Transducción de Señal/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Nat Commun ; 7: 12038, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27356767

RESUMEN

Organogenesis and regeneration require coordination of cellular proliferation, regulated in part by secreted growth factors and cognate receptors, with tissue nutrient supply provided by expansion and patterning of blood vessels. Here we reveal unexpected combinatorial integration of a growth factor co-receptor with a heterodimeric partner and ligand known to regulate angiogenesis and vascular patterning. We show that ErbB2, which can mediate epidermal growth factor (EGF) and neuregulin signalling in multiple tissues, is unexpectedly expressed by endothelial cells where it partners with neuropilin 1 (Nrp1) to form a functional receptor for the vascular guidance molecule semaphorin 3d (Sema3d). Loss of Sema3d leads to improper patterning of the coronary veins, a phenotype recapitulated by endothelial loss of ErbB2. These findings have implications for possible cardiovascular side-effects of anti-ErbB2 therapies commonly used for cancer, and provide an example of integration at the molecular level of pathways involved in tissue growth and vascular patterning.


Asunto(s)
Anomalías de los Vasos Coronarios/genética , Vasos Coronarios/embriología , Células Endoteliales/metabolismo , Neuropilina-1/metabolismo , Receptor ErbB-2/metabolismo , Semaforinas/metabolismo , Animales , Anomalías de los Vasos Coronarios/metabolismo , Ratones , Morfogénesis , Neovascularización Fisiológica , Receptor ErbB-2/genética
8.
Nat Cell Biol ; 17(5): 627-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25848746

RESUMEN

The murine neonatal heart can regenerate after injury through cardiomyocyte (CM) proliferation, although this capacity markedly diminishes after the first week of life. Neuregulin-1 (NRG1) administration has been proposed as a strategy to promote cardiac regeneration. Here, using loss- and gain-of-function genetic tools, we explore the role of the NRG1 co-receptor ERBB2 in cardiac regeneration. NRG1-induced CM proliferation diminished one week after birth owing to a reduction in ERBB2 expression. CM-specific Erbb2 knockout revealed that ERBB2 is required for CM proliferation at embryonic/neonatal stages. Induction of a constitutively active ERBB2 (caERBB2) in neonatal, juvenile and adult CMs resulted in cardiomegaly, characterized by extensive CM hypertrophy, dedifferentiation and proliferation, differentially mediated by ERK, AKT and GSK3ß/ß-catenin signalling pathways. Transient induction of caERBB2 following myocardial infarction triggered CM dedifferentiation and proliferation followed by redifferentiation and regeneration. Thus, ERBB2 is both necessary for CM proliferation and sufficient to reactivate postnatal CM proliferative and regenerative potentials.


Asunto(s)
Desdiferenciación Celular , Proliferación Celular , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptor ErbB-2/metabolismo , Regeneración , Transducción de Señal , Factores de Edad , Animales , Animales Recién Nacidos , Desdiferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Imagen por Resonancia Magnética , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neurregulina-1/metabolismo , Neurregulina-1/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/agonistas , Receptor ErbB-2/deficiencia , Receptor ErbB-2/genética , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Imagen de Lapso de Tiempo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA