Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Methods Mol Biol ; 2278: 87-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33649950

RESUMEN

The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.


Asunto(s)
Bifidobacterium/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Bifidobacterium/química , Técnicas de Cultivo de Célula/métodos , Cromatografía de Gases/métodos , Isomerismo , Ácidos Linoleicos Conjugados/análisis , Espectrofotometría/métodos
2.
Microbiol Spectr ; 9(2): e0117921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643412

RESUMEN

Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography-coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA. IMPORTANCE This study provides insight into the enzymatic mechanism of CLA synthesis in L. delbrueckii subsp. bulgaricus and broadens our understanding of the bioconversion of LA and RA by OleH. The impact of OleH on the production of the c9, t11 CLA isomer and stress tolerance by E. coli has been assisted. The results provide an understanding of the factors which influence OleH activity. L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH presented two putative fatty acid-binding sites. Recombinant OleH catalyzed both LA hydration and RA dehydration. OleH was shown to play a role in bacterial growth performance in the presence of LA.


Asunto(s)
Hidroliasas/metabolismo , Lactobacillus delbrueckii/enzimología , Lactobacillus delbrueckii/metabolismo , Ácido Linoleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Genoma Bacteriano/genética , Hidroliasas/genética , Hidrogenación , Lactobacillus delbrueckii/genética , Estrés Fisiológico/fisiología , Secuenciación Completa del Genoma
3.
Food Sci Nutr ; 9(11): 6020-6030, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34760234

RESUMEN

In this clinical trial, the safety and effectiveness of Lactobacillus paracasei N1115 (LP N1115) were investigated as a potential probiotic to enhance gut development in young children born by caesarean section. Infants and young children between the ages of 6 months and 3 years were administered with a probiotic consisting of LP N1115 strain (n = 30) or placebo supplement (n = 30) over an 8 weeks intervention. And the stool consistency, bowel habits, salivary cortisol, fecal microbiota, and short-chain fatty acid metabolism were investigated. Efficacy data were obtained from 58 participants who completed the study. Overall, the placebo functioned similarly to LP N1115 group in relation to stool consistency, gastrointestinal symptoms, salivary cortisol, and short-chain fatty acids. However, the scoring data relating to the 6-18 months subgroup receiving LP N1115 remained stable over 8 weeks in comparison to placebo. Analysis of the fecal microbiota using 16S rRNA amplicon sequencing revealed that the phyla Firmicutes represented 62% of the microbial relative abundance in the feces of the subjects during the intervening period. No significant changes in alpha- or beta-diversity were noted between the placebo and LP N1115 groups overtime and at each time point. Differential abundance analysis indicated an increase in Lactobacillus in LP N1115 group at weeks 4 (p < .05) and 8 (p < .05) in comparison to the placebo group. These results suggest that probiotic supplementation with LP N1115 was well tolerated by the young children and subtle changes in the microbiome were noted throughout the intervention period.

4.
Annu Rev Food Sci Technol ; 10: 75-102, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30908947

RESUMEN

Human milk contains a plethora of nutrients and bioactive components to help nourish the developing neonate and is considered the "gold standard" for early life nutrition-as befits the only food "designed" by evolution to feed human infants. Over the past decade, there is considerable evidence that highlights the "intelligence" contained in milk components that contribute to infant health beyond basic nutrition-in areas such as programming the developing microbiome and immune system and protecting against infection. Such discoveries have led to new opportunities for infant milk formula (IMF) manufacturers to refine nutritional content in order to simulate the functionality of breast milk. These include the addition of specialized protein fractions as well as fatty acid and complex carbohydrate components-all of which have mechanistic supporting evidence in terms of improving the health and nutrition of the infant. Moreover, IMF is the single most important dietary intervention whereby the human microbiome can be influenced at a crucial early stage of development. In this respect, it is expected that the complexity of IMF will continue to increase as we get a greater understanding of how it can modulate microbiota development (including the development of probiotics, prebiotics, and synbiotics) and influence long-term health. This review provides a scientific evaluation of key features of importance to infant nutrition, including differences in milk composition and emerging "humanized" ingredients.


Asunto(s)
Fórmulas Infantiles , Animales , Bovinos , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Microbiota , Leche
5.
Neuropharmacology ; 141: 249-259, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30172845

RESUMEN

Identifying biological markers predicting vulnerability to develop excessive alcohol consumption may lead to a real improvement of clinical care. With converging evidence suggesting that gut microbiome is capable of influencing brain and behavior, this study aimed at investigating whether changes in gut microbiome composition is associated with conditioned responses to alcohol. We trained Wistar rats to self-administer alcohol for a prolonged period before screening those exhibiting uncontrolled alcohol seeking and taking by modeling diagnostic criteria for AUD: inability to abstain during a signaled period of reward unavailability, increased motivation assessed in a progressive effortful task and persistent alcohol intake despite aversive foot shocks. Based on addiction criteria scores, rats were assigned to either Vulnerable or Resilient groups. Vulnerable rats not only displayed increased impulsive and compulsive behaviors, but also displayed increased relapse after abstinence and increased sensitivity to baclofen treatments compared to resilient animals. Then, rats underwent a 3-month wash out period before sacrifice. Dorsal striatum was collected to assess dopamine receptor mRNA expression, and 16S microbiome sequencing was performed on caecal contents. Multiple significant correlations were found between gut microbiome and impulsivity measures, as well as augmentations in striatal Dopamine 1 receptor (D1R) and reductions in D2R as vulnerability to AUD increased. Therefore, using a singular translational approach based on biobehavioral dispositions to excessive alcohol seeking without heavy intoxication, our observations suggests an association between gut microbiome composition and these specific "at risk" behavioral traits observed in our translationally relevant model.


Asunto(s)
Conducta Compulsiva/fisiopatología , Cuerpo Estriado/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Etanol/administración & dosificación , Microbioma Gastrointestinal/fisiología , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D2/biosíntesis , Animales , Baclofeno/farmacología , Ciego/microbiología , Cuerpo Estriado/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Motivación/efectos de los fármacos , Ratas , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA