Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Pathol ; 235(3): 431-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25186281

RESUMEN

Active tuberculosis (TB) often presents with advanced pulmonary disease, including irreversible lung damage and cavities. Cavitary pathology contributes to antibiotic failure, transmission, morbidity and mortality. Matrix metalloproteinases (MMPs), in particular MMP-1, are implicated in TB pathogenesis. We explored the mechanisms relating MMP/TIMP imbalance to cavity formation in a modified rabbit model of cavitary TB. Our model resulted in consistent progression of consolidation to human-like cavities (100% by day 28), with resultant bacillary burdens (>10(7) CFU/g) far greater than those found in matched granulomatous tissue (10(5) CFU/g). Using a novel, breath-hold computed tomography (CT) scanning and image analysis protocol, we showed that cavities developed rapidly from areas of densely consolidated tissue. Radiological change correlated with a decrease in functional lung tissue, as estimated by changes in lung density during controlled pulmonary expansion (R(2) = 0.6356, p < 0.0001). We demonstrated that the expression of interstitial collagenase (MMP-1) was specifically greater in cavitary compared to granulomatous lesions (p < 0.01), and that TIMP-3 significantly decreased at the cavity surface. Our findings demonstrated that an MMP-1/TIMP imbalance is associated with the progression of consolidated regions to cavities containing very high bacterial burdens. Our model provided mechanistic insight, correlating with human disease at the pathological, microbiological and molecular levels. It also provided a strategy to investigate therapeutics in the context of complex TB pathology. We used these findings to predict a MMP/TIMP balance in active TB and confirmed this in human plasma, revealing the potential of MMP/TIMP levels as key components of a diagnostic matrix aimed at distinguishing active from latent TB (PPV = 92.9%, 95% CI 66.1-99.8%, NPV = 85.6%; 95% CI 77.0-91.9%).


Asunto(s)
Pulmón/microbiología , Pulmón/patología , Metaloproteasas/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/fisiología , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Tuberculosis/patología , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis/fisiología , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Metaloproteinasa 1 de la Matriz/metabolismo , Conejos , Pruebas Cutáneas , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Tomografía Computarizada por Rayos X , Tuberculosis/metabolismo
2.
Antimicrob Agents Chemother ; 59(12): 7888-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438491

RESUMEN

With phosphodiesterase inhibitors (PDE-Is) showing significant promise in shortening tuberculosis treatment, we assessed the effect of roflumilast, an FDA-approved type 4 PDE-I, in both acute and chronic murine models of tuberculosis. Alone, roflumilast had no effect on lung bacillary burden and mortality. However, when roflumilast was used in combination with isoniazid, a reduction in lung bacillary burden was observed. These data suggest that roflumilast may be a good candidate for tuberculosis host-directed therapy (HDT).


Asunto(s)
Aminopiridinas/farmacología , Antituberculosos/farmacología , Benzamidas/farmacología , Pulmón/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Ciclopropanos/farmacología , Modelos Animales de Enfermedad , Femenino , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-1beta/biosíntesis , Interleucina-1beta/inmunología , Isoniazida/farmacología , Pulmón/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/crecimiento & desarrollo , Análisis de Supervivencia , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/mortalidad , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
3.
Pharmaceutics ; 15(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986786

RESUMEN

The COVID-19 pandemic has brought about unprecedented medical and healthcare challenges worldwide. With the continual emergence and spread of new COVID-19 variants, four drug compound libraries were interrogated for their antiviral activities against SARS-CoV-2. Here, we show that the drug screen has resulted in 121 promising anti-SARS-CoV-2 compounds, of which seven were further shortlisted for hit validation: citicoline, pravastatin sodium, tenofovir alafenamide, imatinib mesylate, calcitriol, dexlansoprazole, and prochlorperazine dimaleate. In particular, the active form of vitamin D, calcitriol, exhibits strong potency against SARS-CoV-2 on cell-based assays and is shown to work by modulating the vitamin D receptor pathway to increase antimicrobial peptide cathelicidin expression. However, the weight, survival rate, physiological conditions, histological scoring, and virus titre between SARS-CoV-2 infected K18-hACE2 mice pre-treated or post-treated with calcitriol were negligible, indicating that the differential effects of calcitriol may be due to differences in vitamin D metabolism in mice and warrants future investigation using other animal models.

4.
ACS Omega ; 7(29): 25510-25520, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35903176

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inactivation is an important step toward enhanced biosafety in testing facilities and affords a reduction in the biocontainment level necessary for handling virus-positive biological specimens. Virus inactivation methods commonly employ heat, detergents, or combinations thereof. In this work, we address the dearth of information on the efficacy of SARS-CoV-2 inactivation procedures in plasma and their downstream impact on immunoassays. We evaluated the effects of heat (56 °C for 30 min), detergent (1-5% Triton X-100), and solvent-detergent (SD) combinations [0.3-1% tri-n-butyl phosphate (TNBP) and 1-2% Triton X-100] on 19 immunoassays across different assay formats. Treatments are deemed immunoassay-compatible when the average and range of percentage recovery (treated concentration relative to untreated concentration) lie between 90-110 and 80-120%, respectively. We show that SD treatment (0.3% TNBP/1% Triton-X100) is compatible with more than half of the downstream immunoassays tested and is effective in reducing SARS-CoV-2 infectivity in plasma to below detectable levels in plaque assays. This facile method offers enhanced safety for laboratory workers handling biological specimens in clinical and research settings.

5.
EBioMedicine ; 2(8): 868-73, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26425693

RESUMEN

The global tuberculosis (TB) epidemic and the spread of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis (M.tb) have been fueled by low adherence to following lengthy treatment protocols, and the rapid spread of HIV (Human Immunodeficiency Virus). Persistence of the infection in immunocompetent individuals follows from the ability of M.tb to subvert host immune responses in favor of survival within macrophages. Alternative host-directed strategies are therefore being currently sought to improve treatment efficacy and duration. In this study, we evaluated tofacitinib, a new oral Janus kinase (JAK) blocker with anti-inflammatory properties, in shortening tuberculosis treatment. BALB/c mice, which are immunocompetent, showed acceleration of M.tb clearance achieving apparent sterilization after 16 weeks of adjunctive tofacitinib therapy at average exposures higher than recommended in humans, while mice receiving standard treatment alone did not achieve clearance until 24 weeks. True sterilization with tofacitinib was not achieved until five months. C3HeB/FeJ mice, which show reduced pro-inflammatory cytokines during M.tb infection, did not show improved clearance with adjunctive tofacitinib therapy, indicating that the nature of granulomatous lesions and host immunity may influence responsiveness to tofacitinib. Our findings suggest that the JAK pathway could be explored further for host-directed therapy in immunocompetent individuals.


Asunto(s)
Piperidinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Tuberculosis/tratamiento farmacológico , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tuberculosis/inmunología , Tuberculosis/patología
7.
PLoS One ; 6(6): e21738, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738782

RESUMEN

The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as 'non-toxic'. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of 'non-toxic' VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617--VapC proteins with similarity to Rv0549c and Rv3320c, respectively--these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Ribonucleasas/metabolismo , Antitoxinas/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/genética , Ribonucleasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA